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Summary ¢

.nis report summarizes the reccnt work in the application of
the LIE-series method to the solution of ordinary and partial
differential equations.

After a short introduction the power scries method which is a
special casc of the Lic scerics method of chapter III is de-
scribed in chapter II. Further we discuss the interesting con-
cept ¢f recursion formulas and the calculation of the "treans-
fer matrix" (connection matrix), the derivatives of the solu-
tion with respcet to the initial values.

Chapter III deals with the numerical cvaluation of the Lie
sc¢rics perturbation formula. This chapter contains the results
of the report /29/, which has been written together with H.
‘Knapp at the MRC, Madison, YWisconsin. Suitable quadrature foi-
mulas and reccursions, statements on the order and crror csti-
nation are given. Numerical examples finish the chapter and
cempare the nethod also with that of Fehlberg.

;1 chapter IV we prove Grdbner's integral cquation which lend:
to short proofs of the formulas of chapter III and to various
coneralizations of the method. A survey of these is prescnted
at the end of this sumary.

Chaptcr V generalizes the concopt of Runge-Kutta to methods
with multiple nodes, which is possible with the use of the Lie
differential operator D. A general theory is dcveloped and the
nethod of Fchlberg is shown to be a special casec.

Chapter VI dcals with the step-sizc control and chapter VII
shows the application of gencrelized Lie series to the calecu-
lation of switch-on trancicnts occuring in the telegraphic
cquation.,
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Chapter I: INTRODUCTION 1

.+, Statement ~f the problem

I'ind the solutions y1(x),...,yn(x) of an nrdinary system cf first -
order differential equationc

Y%' f1(xvy1v°--’yn)
(1.1) * 0 20 000 0GOSO DBLEOETPNPSS

Yﬁ' fn(xoy1’°°°9¥n)
which at X, assume n specified inicial values
(1.2) yi(xo)= yio (181’000,!1) ]

Here, fi(x,y1,...,yn) are given functions of the variables XoYqoeoos¥y e
Defining the vectors

<
=

1

y: 'f:

d oo
rh eoe

n n
we write (1.1) as

(1.3) yt=f(x,¥) .

e shall keep to this way of writing in what follows. Speaking, for

~xample, of "the solution y(x)" we mean that this ist the solution
vector fy1(xy

y(x)=y ¢

\‘ yn(X)/

i.e., "the solutions y1(x),...,yn(x)" , ete.
Yhen stated as above, our problem is already quite general because any
explicit higher-order differertial equation or system can be re-writ-

ten as a first-order system. This requires merely that all derivatives
except the highest be replaced by new auxiliary functions (cf. Erwe /11/,

p. 27),

I.2, Step~by-Step Continuation of Sclutions

*11 methods discussed in the following give reliable approximations
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§(x) only in the near neighborhood of the initial value x . Large
values of lx-xol may soon lead to poor results. What one can do is
choosc a certain "step" h1 and trace the approximation only to the
point x,=x +h,.This approximation i(x°+h) will then serve as the

initial value of a new step from x, to x2-x1+h2, and vo forth,

Lpart from the specified initial value, such "one-step-methods" do
not use any other information on the previous shape of the solution.
Therefore, we need no longer bother to number the steps but may call
nny initial point X 1Y ge The problem left for the following chapters
i% now to construct an approximation §(x) at the point xex +h from
wiven initial values X, 0¥, and a given step size h with a asensible
rolume of calculation in such a vay that this approximation is as
close a3 possible to the unknown solution,

E.}. Error

The size h of the steps depends above all on the desired accuracy.
maller steps give better accurncy (not considering rounding errors)
but require more work. To maukc a sensible choice of the step size
vie must therefore have a rough idea of the "local" error committed
Juring o step of intcuration.%c shall discuss this when dealing with
vhe different methods individually. However, the total error committed
vfter scveral steps is still undetermined. This error may soon become
mich greater than would be expected because of the insignificant
loeal errors. The decisive factor is whether the solutions next to y(x)
approach y(x) or depart from it as x incrcases, i.c. whether the
3olution is stable or unstable. !orc information about this can be got
‘rom the so-called transfer matrix.In Scction II.6 we will sce how

Vo calculate it,

“n the case of n=1, i.u., one differential cquotion, only half of all
cases give unstable solutions, In systems of differcntial equations
(hence,also in differential cquotions of higher order),hoacver, there
is nearly always at least one unstable component. Thercfore, accuracy
must bce high should the solution be continucd over a dowain of

considerable cxtent, Here are two examples that involve some trouble:
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y'=10y'+11y, y(0)=1, y'(0)=-1
y(3)=?

(For greater detail see Collatz /7/, p. 49),

y"+(1-x2)y-0, y(0)=1, y'(0)=0, y(100)=?.

In the last example, accuracy would have to be 5000 places if some-
thing should be obtained for x=100.



Chapter II
Pover Series
by G. Wanner
Abstract:

Solving ordinary differential equations by power series expansions
has again become rather popular lately, on the one hand because the
cocfficients of the solutions can be calculated by computer through

recursion formulas, and on the other hand because estimation of error
is relatively simple.
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II.1, Solution by Power Series Expansion

Power series of the solutions y(x) will henceforth be written in the
way adopted by ‘. Groebner. This will turn out to be very useful,
especially.in later chapters.

Let F(x,y) be an analytic. funetion of the variables x,y1,..;,yn.
Inserting solutious y1(x),...,yn(x) in the place of ¥ yee0,¥, W0 find
a function that depends on x only. By the chain rule, jits derivative
with respect. to this variable is

dy, dynJ

: da__ i | n
(1.1) P F(x,y(x)) = [Fx+Fy >t +Fyn P

1 x,y(x)

Here, the bracket symbol [ . ]x,y(x) means .that the variables x and
y must be renlaced by the functions x and y(x) after the partial
differcntiations have been performed., Erom now on we shall kzep to
this waey of writing, i.e., cvery time some kind of expression stands
nfter such brackets it must be inserted for the variebles .x and y.
3ince the functions y(x), which we have inserted in Eq. (1.1), are
supposed to be the solutions of (I.1.1) or (I.1.3) we have -

;;i = £, (x,5(x)) = [fi(x,yi]

xuy(x)
and
a oF oF 3
iz F(x,y(x)). = [3; +f1(x,y);7-+...+fn(x,y)5%}-] .
i 1 D,
- n xoY'(x)
(1.2) _ [PVJ
’ x9Y(x)

where we have defined the linear differential operator

] J 1] O
o5 A Y ) cee e
for brevity.
By iteration of (1.3) we find. for the higher derivatives
q* o
(1.2") —m F(x,y(x)) = [D I’] ,
dx s x,y(x)
whare DHF means that the differential onerator has to be applied
1w tim2s to F.

“hug, the wower series of the functions F(x,y(x)) at the point X,
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can be written as

S (xex)" ey
(1.4)  P(x,y(x)) = E{:“f:;g__ gﬁ-lF(x,y(x)) ] -

u=0 dxu x-x°

owing to y(xo)-y° (121:2) .
Setting F(x,y)-y1 we obtzin the series for the solutions proper
-(X-x )Il
(1-5) yi(X) = —_— '-Duyi] (1'1,..0,").
b x

u!
u=0 o'V

5imilar expressions occur also in the theory of transformation groups.
Therefore, such series, especially the ones derived in the following
chapters, are also named Lie-sgries.

I1.2. Recursive Calculation of the Cocfficients

e shall now discuss the recursive calculation of the power series
coefficients as lately adopted by Gibbons /18/, R.%, Moore /36/ and
many other authors., It has become very important thrcugh the use of
electronic computers,

We assume that the functions f1(x,ﬁ have been composed of the variab-
les x and Yqreees¥y by finite sequences of elementary operations.

We note all intermediate results. Each of these intermediate results
follows from one or two of the preceding values (one-place and/or
binary operations) or from XyYqse009¥, OF from a constant c¢. Supjpose

p(x,y1,...,yn), q(x,y1,...,yn) and r(x,y1,...,yn) are three (or two)
operands that are interrelated through an arithmetic operation

(2.1) r(xoy1’0°°9yn)= p(xoy1,°°°9yn)*Q(xvy1o0°°,yn)
or some sort of elementary functions g

(2.2)  r(xyyqpeeesy)= 8(p(x,5,00000y,))

Then we introduce the following notation



H u “
1 ] D q JDr
(203) Pu u! [ Qu- ! ] Ru- u' .

Henee, these quantities are functions of the variables XyYqreeosYy o
For the functions x,y1,...,yn,f1,...,fn,c which are special cases of
such operands, we shall also usc the corresponding symbols Xu, Y1u""
...,Ynu’ F1“. o0 ey Fﬂu’ c“ .

In what follows we tabulate formulas which permit us to calculate Ru

for (2+1) or (242) from the coefficients
Pu ’ Pu_1 ? Pu_z gecey PO
Q“ ) Qu-1 ) Q”_z posey QO (Only for (201))

Ru.1 [] Ru-z ges oy Ro [ ]

"ot rep 4 q R =P *%,
.f ; H = - = -
'ifference: r= peq Ru Pu Qu
d R b ( )
roduct : I'=D.q = 4 - u-°,1,2,ooo
W f?o P h=p
/ e -SThe ), )
notient: r= p/q Re=(P=-> RK Q Un0,1,25000
[ u ‘bﬂa P H=p 0
_ 1{-.-.1 )
2Xps  r=exp p Ry= < ;.o(u-p RpP“_p » Ry=exp P
u=1
. = 3 ‘ - l\ - =
log: r= log p R“ LPM L'fﬁn(u p)PpRu_p]/P° » R =log P_
“quare root: r= P R =55 {P B R}, R=VP,
e = I - - ’ =
Tl 13N %—ﬂ P u=p To” o
. d=1
. i e Ay L c
Constant power. ra p R =) > (cu=(e+1)p)r P {=—=— , R =P
] t‘ﬁ;a P [ P “PO o o
»
(P fo) )

) For the case Poao and ¢ a positive integer, G.Margreiter has
‘crived special formulas, cf. /53/ .
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oin and cos: q= sin p Q = (u-p)R P

=

"L

i

r= cos p - &A? (u- p)Q P ol R = cos P

Proofs can be found in Moore /}6/ and Wenner /5'2/.

When all operations that give the functions fi(x,y1,...,yn) from x
and Yqyreeeyy, are replaced by the corresponding recursion formulas,
+

these will give the values Fiu from'xu and Y1,u""’Ynu if all
derivatives of lower order are still present, Because of

u+1 g

these quantities are equal to F, = (;1-4-1)‘11,u+1 . Hence,

1 ( u'°,1,2,ooo)

(2.5) Y e ( i=1,2,000 ) °

141" g+l dp ?

The procedure can now be repeated with the quantities Yi uet It
’

will lead to a recusive computation of the Yiu » Recursion begins

with the velues Y, =y, (initisl values) using the formulas

io

(206) xo'x, x1‘1’ x2=x}'ooo"°

and, for a constant e,
(2.7)  Cg=c, Cy=Chmeuv= o

Then, it proceeds according to the pattern

XO,Y1°,000,Yn°"’ ....PO,QO "Roooo "‘F1°,ooo,l"n0

R NS SSSS S S, —»
' v =
Y11,000,Yn1" oooot1,Q1 R,Iooo aF‘11,000,Fn1
e ey e ey it L b
Y1?,...,Yn2 .'..Pz,QQ R:,_... F12,...’Fn2
pm =z il - &

Y13,.O.’Yn5 tho

Some of the authors that have worked with one of these (or similar)
recursion for-ulas are Steffencen /46/, Miller-Hurst /35/, ®.Rabe /50/,
“.6autschi /16/, E.Fehlberg /14/, 1.iennig / /, Deprit-Zahar / 9/,
Leavitt /}2/, Aichtmyer /41/.
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II.Q, Bgtimation of Error

Estimating the error of a ceries that hus beon out off (e.g., after
the m-th term) is thus indispensablec for a sensible choice ond control
of the step size. Onc possibility ie to bound the error by means of
mejorant serics (e.g., W. Groevmer /21/, /22/).

However, with Duffing's differentinl cnuation as an example, G. Maef
/34/ has shown that using Lagranece's remainder of Tavlor's series
rives an error limit vhich is hv 3-4 povers of ten more iccurate than
in the case of the majorant technique.

If 211 occuring derivatives cxist and are continuous, then we have,
according to Lagrangc,

yi(x) = ; (- o)“ [D"y -, + R
i T3 p! 7 1_,xo’y° im
(x-xo)m+1 g+
e Rim = (m+1)! [dzm+1 yi(x)]x-§ » XS §sX
where, oving to (1.2')
(x-xo)m+1 -

(3.1) Rig = “Tmem)T

in+1 .
Ny J X £E4x
K i . 1]
- §’Y(§) it

or o precise cstimation of the crror one nas to know a douwain B wlio.

b
be estimated in this domein (Fig. 1)

is known to contain the solution y(&). The functions D"Hyi can then

y o U

(Fig. 1)

i .
---o—-q-....- : N X
; x, 14 X

ifaed /34/ demonstrates this by Duffing's differential equation.

R.E. Moore /36/ solves this wroblem gencrally and automatically by

moang of interval arithmetices.
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~Owing an approximate e¢rror iz sufficiont for a sensible control of
che step siz2. Here, one may put up with, say, the value of D'+1yi

at the point Xg1¥, (this would be the first term neglected), or rather:
onc chooscs the larger onc of the values ut the points X 0¥, and
xo+L,§(xo+h) (starting point for the subscquent step). Both numbers

4r¢ easy to compute: it i3 sufficicnt to run the iteration for calcu-
lating the Taylor coefficients for this and tho next stcp through
another loop.

%2 shall obtain the formula (3.1) for th: remainder as a spzcial casc

in the nezt chapter,

TI.4. Transfer Matrices

Lot yi(x) be solutions of thc differcntial cquation (I.1.1) for the
initial values Yo The matrix

/ oy, (x
(4.1) H(x) = (Hik(x)) 1| vy ))

\ ayko

‘hich consists of the derivatives of the solution yi(x) with rospect t-
~he k--th initial value Tien? is then called the transfor matrix per-
toining to y(x).

Tz other words: The trunsfzr matrix decseribes, in first approximation,
the variation of the solutions ¥ at the point x if the initial values
¥y OFC changed. When we change the initinl values Yio0?***¥po by

PP EEXTT-SN the solutions Yy at the point x will in first approximation
chaugn for

) oy (x) ay, (x)
€ b 4 = > €. 4+ oo + [ .
°y10 1o ayno no

Tl’)US’ ay1 x) . ay1(x) .‘J ; !

/e1(x)\ av1o KT €10\
4.2) { . 2 .

i

) x 9 x \
\5 (x) Z?( ! Y gn( ) \ €no
' 3 J1O yno / 1".. |

¢r, in vaoctorial form,
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(4:21)  &(x) = H(x)e,
;
2
1 i"' |- r ' J
/ L
A i 1o . - X
A -
X FPig. 2 X

For cxamplc. errors committed somewherc in the numerical integration
can be mapped forward or backward to any fixed point by mcans of the
transfer matrices.

Honce, these also describe hov an error committed at a certain place
influences the final result, "e shsll consult the transfer matrices
2120 for an "optimum" step size control hich takes stability and the
tatel final error into nccount (Chapter VI). ,

"he trancfer matrices are also useful in boundary value probléme in
which some of thce initial values are missing and have been replaced by
conditions at other paramctric points. Here, the missing initial values
must first be gucvssed and then be improved by mcans of the transfer
natrices, after the rclevant solutions have been found (Wanner /51/).

I1.5, Caleulation of the Transfer Matrices

To calculate the transfcr matrix preliminarily for a small domain, we
differentinte the solution serics (1.5) term by term with respect to
the initial value Yio!

O
ay, (x) (xex ¥ T
(5.1) By (x) = 53— = = 5= oy, C
Yko u=c t yk xo,yo

In thc next section, we shall find recursion formulas for the ealcu-

1:tion of the expressions 33- D“Yi .
k
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A remainder formula for the error aftcer the m-th term, which is analo-
gous to (3.1), is
(x-x

)m+1 p+? ] ffdfil
(5.2)  8,,.(x) -(;§77" [ V{Jg.y(g) ko

x°4 g!éx .

In the casc of a gtep-by-step integration of the differential cquatiown:

with the intervals x <x,< ...&x, , Eq. (5.1) gives only the local

1
transfor matrices

oy, (x,)
) | by |

Owing to the chain rule (for functions of several variables), these
matrices can be multiplicd with cach other to give the total transfer
matrix

(v.3) H(xy) = Clxyyxy_q) e eC(xyx,) C(x,,x,)

Notice that

(5.4) H(xo) = C(x,x) = E (Identity matrix)
and
(5.5) C(x,x') = C(x' ,x)'1 .

For lincar systeds of differcntinl cquations, thc columns of the trans.-
fer matrix coincide with the fundamontal solutions of the correspondir-
homogeneous system (with the initinl valucs Oyeey1,.4,0), and the rel:-
tion (4.2) not only holds in first approximation but is valid cxactly.

Another possible way of calculating tho transfer matrix is to integrat-
the system -
dH,, (x) SJL- af
ik . i i, (x)
5x LJ-‘T ayj Jk X
x’Y(x)

for cvery k=1,...,n with the initial values
Hip(xg) = 85y

togethcr with Bq. (I.1.1). This formula is usually given.
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1I.6. Recursion Formulas for.Exgressibns with an Additional Operator

Here, we repla.co ‘the operntor -a;— of (5.1) generally by D vecause
‘k

we .,hall need the folloving formulas for other purposcs too.
Suppose D is another linear differsntial operator. In addition to (2.3’
we adopt the symbols

“nk - Aani An't
: 5 .00p 5.00a 7. 00z
(6.1) P:z p! ' Qu ! ' Ru p!

for certain operands p,q,r. again, thesc quantitics are functions of

Xy¥qreee sV and the corresponding symbols iu’YW' Ve ,Y ,F Lid ofF "I.‘_nu

e
5 .are again val:ld for the functions x;y1',...,yn,f ,...,f sCe

iiso for ‘chcee quantitios we obtain rocursion formulas by simply
2pplying the operator D to the formuln,a of page

Table
Sum: r=p+q Co ﬁu'i;u*au
Differance: r=p-q ﬁ'usf"u-ﬁu
Product. r=p.q K =, P ) - +P f),'
. i %_—5- pVu-p" p =p
el
Quoticnt: r=p/q ﬁu-{Pu' (RpQu - Rp ue=p K/Q
. . p=0 o
s =0 N — - l - 0 e . - :
oXp: reexp p R E (u p){ p oot pPp_p} R =R P,
t ] = - P 1
log. r=log p Ru u m Sp-‘](” p)(Pp s p e p) PoRu’/Po )
R =P /P, )
Root: r= P .R-=-1_{F -2 RR } u-01 se e
, b 2R\ 3:1 Pik=p) '

Jonstant power: rsp° R a{d (cu (c+1)p)(RP +R TP )R P 1Y, 2
T P u=p" P H=p 0§/ o

o oo o Pofo




_ I AL oM R =
cin, cecs- q=sin p Cu~ m /=6(u 0){R9Pu-p pPu-p) 2 0 Ro 4
a=1
- -1 to s R P
r=cos =—2 = +Q P R =-Q P
co8 P Ry = p:o(u PRYP, 0%, u-p} » Bom=QTs

Sce Wanncw /51/, p. 27.

Yirst of nll, all expressions Ru nust ¢xist should Eﬂ be calculated.

.oplying D to (2.5) we obtain

F.

/4 R
(5.2) Yi,u+1 T ou+1 Ty

vwhick enables us to employ rccursion. As e can sce, the above formulac
st independent of the particuler choice of the operator D. Setting,

Ceffey D = 3%; we find the expressions

Icl

5 da

i
Yiu T D"y

Yy i

Q

which cre necded in (5.1). In this easc, recursion starts with the

initial values

1 i=k
) S S
.u‘ A - *
to &y "1 lo ek
For the independent variable x woe have fo = f1 = see = 0
and for o constant ¢ Eo = 51 = .e0 = 0,

Subroutines, which cnlculate these formulas arc given in Knupp-Wanner
/30/ or Wanner /51/.

11.7. Reecursion Formulas for Othcr Opcrations

The clasg of operations th-t arce allowe: for the formation of the
Junetions fi(x,y) will bc consid rably ~xpandcd in thic section. Ve
shrll see that every funchion satisfying - differential equation that
can rlreoedy ue process~d ic «llowed hern,

First, v shor by way of z few cxuiples how recurasion formulas can be
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got for mnny functions by introducing auxiliary expressions:

r=arctan p
Here, Dr = —D-D-?-
1+p

We sot 1+p2=q y whence qDr=Dp .

We find
2
Q = z-P P y Q =1+P
W pao P H=p o o
(7.1) }
N
R ={P - = °=1(u-p)QnRu_p}/Q° , R, =arctan P_ .
r=tan » . When sin p and cos p occur simultaneously, the best wey is

to write r = %%E—% and to usc the formulas of page .

7/hen sin p or cos p docs not occur, it is preferable to use the formulus

2
Qu-1':§:inpnu o=t 0 Q=R

p=0

R = —2 (u- p)Q, P ., » Rg=tan P

p=0

(7.2)

which have been obtained by reversing the formulas (7.1).

r=2resin p :

e sot q=4(1-p§) , whence qDr=Dp . Owing to q2-=1-p2 we obtain

=1
Q= -i[iP P _ ?_[Q Q ] . o-r,2)

P H=p

(7.3) j;:l
' ki
R,= {PB- : pgT(u-p)QpRM-P}/QO » R =arcsin P_ .

For r=arccos p , nll formulas rcmain thc s~me, except for Ro-arccos o

1S

For the correspondines hyperbolic functions, only a few signs have to

bc changed in the formules on »agc 16. Of course, also for ~ll thesc
forunlas there 2re nlso the corresponding recursions with the additio-

nal operator D.
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Considor the gecnernl case that u1(x),...,um(x) are solutions of the

diffcrcntial equctions
uf(x) = g (xyu(x)) .

Thc only assumption we make is that the funotions g; are r:dc up only
of thec opcrations deolt with so_far. Then we can give rocursion formu-
lns also for thosc functions. This step can be repeated over and ove.®
ond lends to n successive cxtension of the recursion formulas to morc
and morc functions of nnalysis.

Let

ry = ui(p) (1’19“0,111)

Since the functions g; nre made up of operations whose recursions ar:
known, we can crlculate the expressions

p*g, (p,u(p))

mt——

T BTy

»*

for thec operand p(x,y) from the cozfficients up to Pu 40 By bt
- Ji-

Because of Dri-ui(p)Dp = gi(p,u(p))Dp we have
4=1 .
1y .
(7.4) Riy= % p=o(u-p)GipPu_p y Ry=uy(P)

the saught recursion formula.
Finally, we consider the importnnt cquation

(7.5) as(x)u" + az(x)u' + n1(x)u =0

which vith the usual substitutions usu, u'=u2 becomes
ug = U,
" A,U+05U,

Let p(x,y) be en arbitrary opersnd and let

ry=u, (p)=u(z) , ry=u(3)=u'(p) -

*.
We put ak(P)=&k(x,y) and assume that the coofficicnte
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* Dpak(p)
Akp =

p!
con be caleulated by mcans of the cxisting recursion formulas from
thce values Po""’Pp'
slorcover, e usc the notation
ry(2)uy(p) + ay(p)uy(p) = ayr, + a;r, = q ;q:- 8
3

then we find the recursion formulas

=1 N
Q-1 “p‘s[k“’ 1,u-p=1 A;pR.?,u-p-J "
[Q p 3 H=p= 1J/A;.o i

(7.6) 3 (p=1,25004)
i -2:_0(#1 LRI ;
= !
Rp= % u (n-p)S,P, - j

=0

0" u(Po) » R, =u(P) .

’ el

Tnesc recursions arc valid for =21l funetions that satisfy a differen-
tinl cquation of the form (7.5), that is, for example, 2ll kinds of
Bessel functions, Mathicu functions, Weber functiops, Chebyshev-,
Legendre-, Hermite-, Laguecrre-, or Jacobi polynomials, etc.

for Bessel functions of the first kind, e¢.g., we have

R * 2
ns—p,32=p, '11=P-n

nd

Finnlly, we should like to mention that for orthogonal polynomials,
in particular for higher n (low n are uninteresting), the above for-
mulas require much less work than using the "guncrating functions®

as cuggested by Leavitt /32/“
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Chopter TII

LIE-Series

by G. Wanner

This chapter discusses the numerical cveluation of W. Groebner's

Liz series perturbation formula, on which an efficient numerical

mathod with satisfactory crror cstimution is based.
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III.1. Grocbner's Perturbation Formula

Groebner's perturbation formula states how one has to corrcct an

arbitrnry given approximate solution F(x) (?1(x),...,?h(x)) in order
to find the solution y(x). This formula is a generalization of Taylor's
scries (II.1.5) which cnn be obtained from it when the operntors are

chosen in o specinl way.
A system of differential equations must be known for the approximate

solution ?(x):

(1.1) §' = T(x,9)

and the approximate solution muct assumc the same initial values
(1.2) ?(xo) = ¥,

e, introduce the onerator
\\

y
yn

(1.3) Dy = DD = (£,(x,5) .?,<x.,y>>-a-;—1 2w (£ (5T (x,y)

vhich accounts for the diffcrence between the two differential equatiorn -

Jonoge,

(1.4) D =D, +D,

As we shall scc in the next chaoter, here we have the formula

aQ

(1.5) y(x) = §(x) + :z_—) ‘V—«gﬁ [DzD"y];.S‘r(;) i

("7. Groebner) for thc sought solution y(x).

TiT.2. ¥napp's Remainder Formuln

sccording to Knapp /26/, the remainder of the series (1.5) cfter, sy,
5 terms ic

(2.1) y(x) = ¥(x) + R_(x)

with
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(2.1')  F(x) = §(x) + Z '(""ﬁ [Dzna”]s.§(§) %

0

(2.1m) Ry (x) § S (LI I g J,9<§)}“§

0
We shall prove this formule in the next chapter. Knapp / 26 / has
derived these formulns assuming thnt fi,fie ¢¥ &

Another formula for the crror can bec obtanined by increasing s in (2.

by 1 ond adding the last term a=s+1 of (2.1'):

(2.2) R (x) -S Lé%;l{[ms 13]& y¥(%)° E’D ng,y(g)}

o)

Finally, » mean valuc theorem of integral calculus gives

(x-x )s+1 341
(2.3) R, (x) = (341 1 {f y-li,l,y(g )" [ y.]g Y(‘s‘1)
X, % 3, 6%
and ( )S+2
=% [ o+l 1
(2.4) R (x) = —Es—j;)—!-{'_m’ i 3’.’;2,y(g2)'[1’1DS+ y]§2,§(§2)
X,% 8,5

I11.%. Special Cnse: Power Scrics

The power serias cxpansion of the solution y(x) ie a special case of
the Lie series (2.1), if the origin.l differential equation is

autonomous, i. &, if the function f(x,y) do not dcpend on x and we

have D = Q— i‘(y)ay

=1

d
To show this we put D, = , D, = f(y)g}- , §(x)=y° , thus

N Mo+l
!.DQD y-’§,9(§) - LD ‘V_Jxo,yo since here also D%y do not denend on -



How the integrations are readily curried out giving with a+1=3 and the
remainder (2.4)

y(x) = {2 o . [D ij .

B=0 3 (s+2)!

q+2

|_ns+2 ]‘2’“;2 y X E§ 8%

the formula (IT.3.1) which has becn used before.

I11.4. Choice of Approximate Solutiunz

The approxim-te solutions ?1(3),...,5n(x) ¢an be chosen freely. They
only have to satisfy the initinl conditions (1.2), and a system of
differential equations muct be knovwr for them. The better the choicc
of the approximate solutions, th: ore =fficient is thc method.

It is expcdient to use the firsi terus of the power ceries expansion
(11.1.5) for am approximnation tc starc ~ith:

(x-x ' ™
(4.1)  §,(x) = z: "3 }1M e >l (x-x )“rY ‘]'o’yo

=0 "n=0

{ef. (I11.2.3); of course, m ma, ~Jz0 uepend on i. A corresponding

sy:tem of differeutial equa‘ions can be “ound by simply differentiatlii-

tq. (4.1) (the quantities {Y | arc constants)
Loipax, 5
A A , o ynel] 1 e b
(4.1*) ¢ (x,y)-y'(x)-s (2 ) WY, = (x-x_)"|F
i i = o L indx sy, =3 o L iujxo,yo

{ef. (I1.2.5)), where the furcticns ?i depend on x only. The formula:
(4.1) and (4.1') are uzed in she general prosran GROEBNER, reproduced
in Knapp-Wanner /30/ or Yonmner /51/.
One may also retain parts of .ne orisinal system, e.g., in equations
of the kind

Y=Y,

yé"}

VAL (€ S SPRTRTRN

14

-l




26 I1II.5.

and replace only the last cquation by a polynomial in x. In this case,
however, the degrees m in Eq. (4.1) must decrease by unity each as i
increases. This reduces the oper-tor D2 to a simpler form since then
it consists merely of a single term.

When the functions DmMy1 are bounded in a2 region B of (x,y)-space,
then we have from (II.3.1)

R Ix-x 'm+1
(4.2) ly, (x)-8,(x) | ¢ ¢ -?;:1)!
or
(4.2) y(x)-F;(x) = o((x-x)™") .

In this caac we say that ?i(x) is of the order m (or of the error ord::
n+1).

Of course there are oxamples for which n choice other than (4.1) ic
nore convenient, ¢.g., the equation

y=V¥x+V¥y , y(o)=0 .

Hore, the first Taylor term venishes, the second is infinite. However,
choosing the approximate solution

?"Gy 9'%3‘3/2
ve obtain from (2.1') with s=0

s .2,3/2 )24 ,7/4

y=%=x + V; % x

Compéred with other methods, this is 2 very good approximation /4?/.

For small x values its accurancy is sufficient and the singular point

x=0 ¢~n be avoided. More terms of Rq. (2.1') are not allowed, becnusc
only f¢c°, whereas f¢C1.

{II.S. Order of the iictuod

Definition:
A mcthod i of the order p, if the solutions $(x) obtained through
it are of the order p, i.g., if for cvcry solution y(x), whose Taylor

sories exists far enough,
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+1-
yi(x) - §i(x) = O((x'xo)p )
The Taylor series of the two solutior. will then agree up to et leact
the p-th term. o
We shall prove now that the mcthod dc./i-cd by Eq. (2.1') is of thz
ordier m+s+1, if the starting solution y(x) is of the order m:

Theorem: If the functions D° f satist: - _Lipschitz _ocondition

&4'

(5.1) '[D f [D f. *4| SKt i:"y; - Yy
X,¥ =

in a region B, and if the starting sc“utiion is_of the order m

. Ix_xo|n+.
(5.2) |y, (x) - § (00|64 —>—- .
(m+1):
thon the relation
K nlx-x ;m’*+2

(5 by (0 - Fy0leu 2

m-i.s.’

)
holds true for the solution y(x) thal - lows from (2.1').

Proof. DS+1

get

|y, () - 5, | = |3 (0] -

yiabsfi , hence substituti ~ "5,1) and (5.2) in (2.1 w-

X 200 To \
|§ o {[I-)Myi]g.y(g)'[nwyi]g.,57( )i-'&,s
0
* |§ 'x_;}'t X glyk(g)-ir‘k(g)l CEN
(o]
é'i 'Il“r'f' K_nM lg-x,|™ ag | .
o ° (m+1)?

(o]

o the statement followa by mcans of %he welleknown integral formula

PR o VN G U Mg

n J = ) carr i (O ag: =1)
o]

This theorem is a speeial cane of ¢ 1 2l theorem stated in che
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next chapter.

Thus, the order of the method increases by 1 with each additional
integral. It may nlso increase by morc than 1, as for example in the

following case:

1 100
yt = x'%0y1%0 g0y =0
2 100,100, 3 100 2 100 3
B ax T x4y )ay ’ D1 " X dy ! D2 =y dy
101
$(x) - I
where Eq. (2.1') with 3=1 gives
(x) = $x) T 410100 x( ) 20099
vix) = y(x +S : d -o'Sx- 100 dg + eee
A (101)190 ¢ ) f (101)199
_ £1°1 , 10101 . 20101 .
101 " 40101(101) 190 20101.201.(101) 177

this contains alrcndy more than 30 000 Taylor terms.

I111.6. Numericel Evaluxtion, Quadrature Formulas

To evaluate Bq. (2.1') numcrically wo must calculate the occuring
integrals in a proper ay. The following lemma is quite useful for
tis purpose.

Lemma: If the sterting solution §(x) is of the o m

yi(x) = $,(x) = 0((x-x,)™")

and if the fi(x,y) satisfy » Lipachitz condjition, then
A

(6.1)  £,(x,8(x)) - £ (x,§(x)) = o((x-x)") .

Proof: According to the first assumption we have *)

yi(x) - §1(x) = o((x-x,)")

*)

because yi(x)-yi(x) gttt
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and owing to the Lipschitz condition we have

£,(x,§(x)) = £,(x,5(x)) = O((x-x}™")

Hence,

fi(xyﬁ(x)) = f;(xo?(x)) =

£,(,5(2)) = £,00s(0)) + £;(55(x) - §(x,5(x)) =

= e YO 1 ( « +1) =
- O((X ‘0) ) + yi(‘-) yi(x)
m.
= 0((x-x_)")
Now we. have to ealenlnts the following intigrals
X %
-~ [ad
{6.2) REEUE (22 7%y] O
X v ' L,5(e) %
*a i )
We choose the step sime h and set, as usual according to Gauss,
X _+h k
o . ’
(7.3) S g(g)ag =!14L_cig(xo+a.h)
b J=1 J
0

whero the Ry (Osa € 1) Adeterrine the given basic points at whieh the

values of g(g,, whick are thun sumried up vwith the weights, must be

calculatad., The rost of this srctiop will now be dedicrted to deter-

mining the coefficinnts n. and oJ ne oxpodicently ns posasible.

First, we find from the lonma thiat ths function g(;) contains the

factor (g-x ), for we have (ef. (1.7))
TB“

[?EDayéjg,?(!) - sz{fJ(g,ﬁ( £))-1 (t,y(g))}[%§- ]§’§(§)

honee, owing Lo (6.1), (g-xﬁ)"ll ir a faetor accurring in the brnces.

Thusa,
(g) = (5-»,)"6(z)

rnd (6.3) attwins the forn

*x +h
0 | .
K. A S ( - m(‘ & - hm+1 4 r L) v
(7. 1) J % '%)) (E)ds . ‘ﬁ:acjaj C(xo+.jh)
. .

™h, transfcrmation ; " sid rive.
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k
(6.5) § 36" (t)dt = ;;%cjc*(aj)

with

(6.6) 6" (t) = G(x_+ht)
and ‘

(6.7) C, = ¢, -

Bquntion (%.5) shows how the coefficients Cj and 8y nust be determined
s0 that an order as high as possible will be attained: The aJ must be
the zeros of the k-th one of the polynomials which in the interval
(0,1) are orthogonal with thc weight function tm, the C, are the
corresponding weights (c.g., Natanson /38/, p. 436). These coefficicnt.
arc tobulated with 8D, e.g., in Krylov-Lugin-Janovich /31/. Stroud-
Secrest /49/ givce a FORTRAN progran for this (hcwever, for the interva:l

(=1,+41)). The cocfficients ¢, can then be found by mecans of (6.7).

J
They can be calculated explicitly for k=1,2:
1 1
k=1: a, = o+l ’ c, =
1 m+2 1 (m+1)af;l

oo o o B#22¥2(me2)/(ms3)

152 = m+4
¢, = (== - o, =) / (n™(a,-a,))
1 m+2 2 m+1 17" T2

', ;%7) / (25(a,-2,)) .

IT1.7. Somc Valuea of the Tadblc of Cocfficients

Here are the coefficients 845 Cy of the quadrature formula (6.3) for

a few values of m and for k=1(1)4 with an accurcey of about 25 places.
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I11.8, Eﬁfactive Formq}gg

To caleulate the integrals (5.2) by means of (6.3) we must evaluate

D?D"y,. at the point

(8.1) Xotash = iy y(xo+ajh) =

If we want to do this by means of the recursion formulas of Sec. II.6..

we have to calculate the expressions fY with the formulas of

10y, n,
%850
IT.2. first, because thesc are nceded for the general recursion fornul-
Then, the formulss of Sec. II.6. givc the expressions (cf. (II.6.1))

re 1007, ]

iY, .| | ——
- i~""j,'lj Coal ’Jgj”lj
vhere (cf. (1.3)) iteration must be started with the values

[?iojgj,qj = [Dgyi]gj’nd = fi(fj’"ﬁ) - ?;(ﬁjtﬂﬁ)

and where we have to put

x0=x1.lau=o

for n constant c.

Now, the formulas (6.2, 6.3) nssume the form

+h o
(8.2) font (x n-g)®
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where the quantities
a
(8°3) Yia = 03(1""3)
can be prepared at the very beginring.

1I11.9. Choosing the Or@g;g n, 9, and k

For choosing k, i.g., the number of the bnasc points used in the
quadraturz formula (8.2), it is inportant to consider that the errors
of the quadrature formulas and th: methodicrl error caused by breaking
off thc surica (2.1') should be of the same order of ungnitude. Other-
wisc, it would make no scnsc going through the trouble of calculating
higher terms of (2.1') while ar. orror ten times as large has alrendy
been committed in the quadraiure of the first (nand usually lereost)
integrzl. On the other hand it mokez 21s0 no s<nse to calculate the
integrals with particular accuracy in view of a lurge bresking-off
error. We¢ shall therefore try to chioose k in such n way that the qu-o-
drature formule is of 20 least the szme order as the method, but the«
its order is not much higher either. As is kuoun, Gaussis quadraturc
fornula with k base peints is of the order 2k. By neans of the lemna
in 3c¢e. III.6 we succcedcd to splitv off the factor t" fron the inte-
grand (cf. (6.5)). Therefore, the arder of the aquadraturc formula has
been raised to m+2k. Thc method, on the other hand, ig of the order
n+8+1 (cf. Sec. III.5). Equating both orders we have

(9.1) e 821

ilencc, k should be about half as great ns the number of integrals

Sed.,

=

The choice of = und s is a question of the differentiasbility proper-
ties of the diffurential equntion as well as a question of expenditurc
With the quoted recursion formulas, labor is approximately proportio-
nal to  (m+1)m+2k(s+1){s+2) or, with (9.1), to (m+1)m+(s+1)2(s+2) ;
thus, it inecreascs with ¢ mueh fastor than with . Mininizing this
exprcssion under the subsidiary condition of conctant order m+s+1

one finds (s+1)(3s8+5)=2m+9 : thics ~pulics to the combinntions
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The choice of m and s is also n question of the desired accuracy. Theo
influence of m and s on the results depends on the magnitude of the
consitants M and K9 of the theorem in Se¢c. III1.5. A method of higher
order is nlways bettcer than a method of lower order, if the error
linit is small enough. Usunlly, m is chosen between 5 and 20, s betwvacn
0 and 5. Then, with the limits of accuracy chosen, one tries to fit th.
stcp size along the solution.

III1.10. Estimation of Error

The (mcthodicrl) error committed in one step may be estimnted by meanc
of the theorem of Sec. III.5 (e.g., by regarding the difference
F(x)-F(x) ns the error in F(x)) or by directly estimating the remain-
der formula (2.1"). The latter case will be considered here. We may
replace (2.1") by

% s(r 1 r
(10.1) R, = | 15:11—’|D9+‘y, - Ds+1y.] . }dg ,
S LA b *-!ﬁ,i(e) L 5,5(3)

for, owing to (2.1")

) - ggx_;;ﬁ{[nwyi]g.y(g)- [Dwyi]g.;(%)} .

o

is the error in the solution obtained from (2.1') when y(x) is used as
n starting approximotion. But owing to (5.2, 5.3), we have for this
error 5
¥ s+17
j m+1 Lfgnlx'xo‘ J
° (m+1+2(8+1))!

* %
IRis(x)|4 ng-x

*
i.e., its order is nuch higher than that of Ris s therefore, it may be

neglcected.

The following lemma, which is about the order of the intcgrand
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+1
Ly 500

)

(10.2) zi(x)a- gT-{[DG+1yi,

is useful to an expedient cvaluation of (10.1).

Lemna: From the Lipschitz condition (5.1) for Dafi-DeHyi and from
” +1 ’
¥y (x)-F,(x) = 0((x-2)""")
it follows that
z;(x) = 0((x-x,)™*") (i=1,+..,1).

Proof: From the theorem in Sec. III.5 follows ;i(x)-yi(x)-o((x-xo)m+s+2)_

This rolation and ¥, (x)-§, (x)=(¥, (x)-y,(x))+(y, (x)-F,(x))=0( (x-x )"

together with the Lipschitz condition give the statement.

Hence, we have
m+1
(10.3) 2y (x) = (x-x )™z, (x) .

With this expression we approximatec the integral (10.1) by means of a
quadrature formula which uses only the point xo+h, i.e., the end point

aof the step of integration, as o hase point. The function

(x-g)s(t;-xo)m+1 is spiit off as a weight function. Therefore, we put
xoth xoth
: s V(o S/, n+1 :
(10.4) ; (x +h-1)"2, (¢)dy = J (2 +h=§)"(§ =x )" "2, (¢ )dg =2, (x +h)
0 0
Ve determine the weight factor ¢ in such a way that (10.4) is fulfilled
exactly if Zi(g) is constant. This gives

. s!(m+1)! pfte+2
T (s+nm+2)! 7 )

Inserting this weight factor in (10.4) wo find the approximate error
X _+h
..n¥ © 18
(10'5) Ris(x) "‘Ris(x) - (x0+h"$) zi(§)d§ =

X
0
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s+1 s!i{m+1)!
=h !s+m+2;! zi(x°+h) *
\ o o = - !
- n®*! (sﬁglgjg'lP°+1Y1J - -;D°+1y1! ap f "
x,y(x) - -x,§(x)

= p8* 15%%%é£%§%llé[Yi,s+1;;,§(x)-[Yi’°+1]x.9(x);

(ef. (10.2), (II.2.3)) or, owing to (II.2.5)

. ,8+1 e!{m+1;l;‘ ' _. ] 2
(1006) Ris(x) h s+m+2 ,l?.Fi’e+1-!x’;(x) [Fi,8+1'.x’§(x) o

I11,11. Numerical Examples

With several simple examples having known solutions we studied the
efficiency of formula (2.1') with (4.1),(4.1'),(8.2) and of the re-
mainder (10.6) by means of the subroutines represcnted in Knapp-Wanner
/29/ or VWanner /51/. In particulzar, we examined the question whether
increasing s and simultaneously decreasing m, so that the total order
m+s+1 remnins constant, has a favorablc c¢ffect on the result or not.
In cleven out of twelve arbitrarily chosen examples, the result was
positive, whereas only in onc = higher numbcr of Taylor terms turncd
out to be more expedient. Here arc the results of the exanple

1) y' = 1-e™¥(sin x - cos ) , y(0) =0

with the solution y(x) = log(sin x + e¢*) . The data given are the
sizc h of the gingle step that was calculated, the orders m and s of
the formulas (4.1),(2.1'), the actual errors of the Taylor series
y(x) with m terms, thc errors of the Lie-scries solution (2.1'), and
the estimate of the error given by the program according to (10.6):
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n n j o Error iny 3Error in ; Estimates of error
! ) ! I
- O - - ' - s o [ S - et
0,125 18 o 7,2.140° " 3,010 3,0, 10717
13 ; 5 2,3.10""" 1,45, 1072 ! 4,0, 10°%
i i ! }
8 10 8,2.107% ' 4,9, 102 1,5 . 10°21
0,250 18 0 3,25. 1070 2,0 . 10" 1,9 . 10”1
13 . 3,19. 1077 6,6 . 10" 3,3, 107"
8 .10 3,62. 1077 . 1,8 . 10°17 ' 0,2 ., 10”17
0,500 ' 18 0 1,5 . 1077 6,3 . 10'6 ! 6,2 . 10'6
13 ' 51 4,0.107% 1,1.107 4,7.10°1°
? a5 =10 " 5,08, 10~1°

8 10 1,5 [} ’lo ",f) L] ‘.0

40t e e e d ie e ee smeee s mn

Trylor's series, which converges only for h £0,5885... cannot be used
®ur h=0,5 (also 0,25). Yit, the Li~ series correction gives good re-
sulvse Bstimoivion of the error ic satisfactory, especially in the car:
of 1 reasonable step size ond o the (usual) smaller values of 8 and

£.onter values of m (ef. Sec. I11.9).

?) Comparison with Runge-Kutta-Fehlberg:

Difrerontial equations of restricted three body problem:

1

Yq 7 Vs (u'=1-u)
! 2 . yl-'.u y1-u'
Vo 2§, t Yy = ¥
20T (B DI (B
Y5 F Yy

EE I 3 __JB'TW

((y»l"'l»‘) "'y3 (yi"U') +y3

Lish this cquation, ir Nurzhawm /10/ a2 comparison of different
moethods vas carried out and there the method of Fehlberg
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turncd out to be the best.

Using their initial values for three different Arenstorf orbitse
we reran thesce examples with our method, taking m=13, s=3.

For ccmparison the results are presentcd in the following table:

The errors dy; represcnt the amount by which the initial con--
ditions failed to be duplicated at the end T of the orbit
(yi-axis crossing) for the ¥i coordinates respectively.
Fchlberg's results are taken from the above mentioned report.
Figures of the orhits and the exact initial datas can also be
found in /51/, p.106-110,

orbit number' .

. of positions velocitices ¢method
;steps .Ay1 1 Ay3 lAy2 Ayu
1 269 (0.3 inot givenl0.07 ;1 Fehlberg
233 0.005‘0.010 10,004 |0,005 |Lic-series
2 395 10.05 fnot given|0.1%)|1 Fehlberg
219 |0.009/0.028  !4.635|0.381 |Lic-serica
3 284 {0.1 |not given 0.0, 12 |Foniberg
, 214 10.,005{0.011  |i.783/0.691 'Lic-series

in units of 10 1%,

*) These values are probably not corrcect, since the conncction
matrix for orbit 2 after once pericd is

3.10¢10° 6.03+10° <=9.37¢10° -1.91¢10%

1.7zo1of 3.149100 -14.88410° -1.06%10"
H(T) = 1.05010" 1.91+10) -2.97+10° -6.50e10?
5.,76910° 9.25010° =1.44#10% -2.93+10°

\
This has becn calculated with ucging 6 terms in cach step. Thus,
the derivatives of y2(T) wvith respecet to the initiel values
(sccond row) arc dominant. During onc period, six digits arc 1:..
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3) Lxamplc for a boundary vaiuc problem:

9

e
Iq
3

Y2

y
e 7,000 = y. (1) = 0, y,(0) = 2

¢Xp 4

Since Yoo in not known, woe {ucss yso znd calculate thc corres-

nonding trajcctorics y:(x), ya(x). If y;(l) # O we correct y50
& [~

with dewton's methed

v, (1)
y_ - J: ek
PeLe ks ”-12(1) .

, 2!
re converpenee was &s follows (=10 “‘, total time 5 seconds):

"

Tac

0.

-0. 46258

~0.4063632591¢7
~0.1656325917242622017314149
=0, 4636325917242622617513495.,

tpis, of course, is a simple cxawmnle only. Other examples for
Nowainry value prodlenc are carricd out in /227 p.73-94.

all computations wore carried osut in double preceision (26D) on
the CDC 3600 at the Matheuatics Rescareh Center, adison
sconsin,

Aeethoer Liawples con be found in the Chapter on step size
sentral (Ch. VIL).
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Chapter IV

Grébnur's Integral Equation and Convergence

Proofs

by G. Wanner ond H. Reitberger

In this chapter we give a novw nroof of the integral cquatior
of W. Grébner. It is a rencralization of the well-known
"variation of constants fornula" to nonlinear cascs. It
makes possiblce an casy epproach to the formulas of the
preceding chapter and to a numbcr of further mcthods.

It zlso leads to many iteration methods, for some of which
we give convergence proofs.

Qur thanks go to Prof.V. Cribner, K.H., Kastlunger and K. Eglc
for their helpful discussions. We further wish to acknowledge
the suggestions of Prof.'l, iiahn, Gras.
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IV.1 _The Integral Eguation of Groebner

in this equation appear derivatives »f the solutions with respect to
the initial values Yoe Therefore in this chapter the following changed
notation is preferable:

Ve derote : A

T dep2BC BY oy 0,0)  rosp. Y(A,¢,y)

the solutions of the differential cquations (T.1,dresp (IIl.1,1), lfnc

A
oY (X . aY (X a 44
(1) BExa¥) ooy y(r,e,y))  EExar) o 3, F(x,x,y))

X

with the initial values x,y; thus with

(1.2)  Y(x,%,3) = 3 T(xyx,5) = ¥

This necans, that the dependance of the solutions on the initial valuco
%y ¥ are now kept in mind, Specialigaiion of these to the prcsceribed

initial valuca X0y, leads to the functicrns <f the preceding chapier s

o E “ A
(1.3)  tlxyx oy ) = v(x), Y,z 5 ) = ¥(x)

The conncetion between the wanted solution Y(X,x,y) and the approxima
A
selution Y(X,x,y), which is assured tc be known, is given by the £cll:-

wing thcorem:

o
Theorems If £, f and 2%§£a11 ar¢_continuous, then it holds that

A

A fe \:

(1.4) Y(X,x,y) = Y(X,x,y) + } 2_”2 Y(x’e’y): R d:§'

- g E:’Y(E-,x,y)
rhoerc “ ﬁ

e s v 0
D2= ;;-Fi(x’y) - fi(x,y); ayi .

Proof: F A ec it follows ((%x,y) e 4
Proof: From Z=¢C it follows that Y(Xyx,y)€¢C’ (cf.  / 6/, p. 25

i
1 T(E,x,y)  Y(X,x,y
Y{K,x,y) = Y(X!SsY(%vxoy)) ' i .

-
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with respeot to £ and after that put § =x @
P

0 = (X, x,y) + £(x,y) 211%;5*11

0x

N
This is possible because of Y€ C1. Finally we insert £ for x and Y(&,.-.,

3 o
for y:

(1.5) 0= [M%;CLL).

3. x

- § 1?(§'xvy) .

-

A similar differentiation of Y(X Y(r,x,y)) with respeot to § yicld.
(using chain rule again)

bt ) | L) Fp) Bgmal]

>

L Y(&',x’

Finally we subtract this from (1.5) and integrate frum x to X:
X

r ’ = £ Xy 2. KyX,y ] . =
J e - g y>__!§’?(§’x’y)a g
X

- L e B EaT - - YD) + YY)
- FX,%,7) + ¥(X,x,¥) (ef. (1.2)).

Thus, (1.4) is proved. The diffcrent arguments .§ and x in VX E,y)

do not mind, since thcy arc cqualiscd by the substitutinn ruls x -9&,

Yy 2 Y(§‘,x,Y)
Done.

This integral equation was found first in 1960 by Groebner for ana-
lytic equations. It was rediscivercd in similar form (ef.(3.1)) in

1961 by Alekseev /54/ . The above given proof is similar to that of

Alekseev.
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IV.2 A Generalization

The above integral equation can be generalised in the following way:

Theovem: If f, ?, %§ are continucus, F(x,y) is ocontinuously differenti:ti:,

it holds that

F(X,Y(X,x,5)) = F(X,¥(X,x,5)) +
X

(2.1) Ln F(X, Y(X,.,y)J ) af .
1 X»Y

t,oyn
(/ ll\

L
!

Clearly (2.1) coincides with (1.,) if F(x,y) = y. For analytic equaticns
this formula has first been recognised by K. Egle ( of. QSR Nr.1).

A
Proof: First differentiate F(x,y(x,§,y(§,x,y))) with respect tof‘.

%F(x,y(x,gﬁ(é y))) =
R (X, Y(X,E, (€, 2,y))) an_uuz) + T(x,7) M} s
=y )y oS I oy goy(gvva')

v . a ~r - . -
Vext we multiply (1.5) by 3;'F(A.Y(K,F,Y(§,x,y))) and subtract the t=:
o) -

fermulas

'g‘if F(X,Y(X,g 9§(§’xoy‘))) =

(£ Gon)- Napy)) Ei, v (x,,5)) PBamar)] | -

§1Y(f’x’}’)

H]

- A a e
“f(va’)“ f(x’.Y)) "a; ”\.XvY(xvxd’)) A .
v ¢ on(\’va) .

Integration from x to X now yilelle *the wanted integral equation (2.1),
since again X
A
‘L‘ F(X 9Y(1(9§ Y(§w~v¥)))_; = = F(X,Y(X,X,Y(Xyx,5))) +
A - ’”n
+ F(X,Y(X,x,'f(x,x,y))) = - T{X,¥(X ,x,y)) + P(X, Y(X.X,Y))

Done.,
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IVe3 A Volterra Integral Equation

-

A
Interchange Y and Y in (1.4):

This yiclds the fol.owing Volterra integral equation for the solution Y.

A
Theorems If f, ?‘ggg Qi%%nzl arec continuous, it holds that

(3.1) Y(X,%,) = ¥Whx,y) + 0, T0x,6,)] af .

1 £4

x ng(cvx’y)

In addition, if F(x,y) is o continuously differentiable funetion, wi
have

(3.2) FOX,Y(X,x,5)) = F(X,¥(X,x,5)) +

X
T F(x,3(x,6,7)) af .
! ¥ L = '§ 4 ]ng(gyxoY) '§

These formulas differ from (1.4) 2nd (2.1) only by the exchange of 7
A
and Y under the integral sign.

IV.4 The Variation of Constants-Formula as Special Case.

A
Let f(x,y) bc linear in y:

A A A
Y' = £(X).Y

A A

nnd let F(x) = (Fik(x)) be the fundamental system of solutions with
A A A AL

P(x) = I (tdentity mntrix). Then Y(X,§,y) = F(X)F 1(§)y ,and

a0 A - A AL
o Y(x,g,y) - F(X)F 1(§) . Thus for the solution of

1 = ?(x)Y + 8(X,Y(X))
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(3.1) rends ns foliows:
PR
(4.1) Y(X,x,3) = P(X)y + ) 7Y vy e(&,Y(f,x,v))aE .

This, however, is nothing elsc than the Variation of Constants-Fornul:
for inhonogencous lincar differcncisl nystens,

This'shows, that (3.1) acts the same part for nonlinear equations,
than (4.1) doos for line¢a~ cquo*ions. I.e., it has applicntions to
agynptotic tncory of difforianticl qqunt}ons ( ¢ege dngow /52/,p.67,‘,3
to scability theory (7. Brouer /597, alzkscev /54/) ar t9 the treat-
ment of gtiff differential cquations. This we hope to discuss in a

’
later report.

IVe5 Proof cf the Fornmulns of Scction III.?2

- o —

The series of the preceding chanter arc now simply obtaincd by in-

serting the Taylor series ol ithe solution
3

g Y Ko 8 e
!,’ - \ V( - 0E ,.V\) . " (4." ‘{) “”-':’ " i ..(.)g..ll)—-— rvar‘"fwl an
5 . al ¢ s! L o X0, £,3)
\ 4 PN ¥

into the right hand sido of (1.4):

/
) A .7 v a .
(5:2) ¥(xyxy) = Frmy) S Ll (o n] 0 ag
tEL - EvY(§9x9Y) 3
® R (.sz’.V)
s At
roX 3
7ith il A=ty '
with Rs(x’x’y) = “‘ “’, wa .{é..;._l./._.!;ns*"]yi ' °: N d'\n’- :
% f 'f:r('(’-§,.7) sl,Y(‘::-ox’.'f) Co
¢r by interchanging tihc ordoer ov intesrotion:
x N . :
- . S e (¥or)® =247 1 * qs s
R“S(x’jz’y) = \} -./J' QDZ -L..‘C}! LU/ "‘/:-; ; A/L ’:"\1. '
XX ] '}’Y("[s§95’) iivy\gox’Y)

The inner integral 5¢ this 291 nor he cvalunted with the help of =,

wonaralized integrel cquetior (2,7) to eive
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Theorcm: If f, ?, %§ are continuous and DB+1y is_continuously diffc-

rentiable, formula o2) is valil with the remainder

X
. 1 Xyy) = .(_x-"i)_s }'. s+1 | -ty ] '
(5 3) Rs(x x y) J s! {"D s‘r‘],y('y',x,y) lp yJY’ 9§(’!9x9y)} dq

Proof: Under the given conditions (5.1) and (1.4) are valid. (2.1) ic
used with the funoction

(_B ] .
F(x,y) = 35;§1- p°*'y  and with X replaced by1}. The stated c:

ditions allow this application. Dona.
(5.2) and (5:3) are nothing elsc than the formulas of III.3, if trans-
scribed to the original notation.

Remark: Knapp,/26/, has proved (5.3) under the weaker condition D°+1MQC.

Following we prove the formula of .Groebner in III.1:

V.6 Convorgonce for s = oo

Theorem: If the functions fi(x,y), i,e., the operator D, are analytic

in some domain, then for a sufficiontly small h=X-x (5.3) converges to
zero, i.e. we have from (5.2)

o X

A < r (Xa N
Lk LTSRS aé;.) ‘J{ '('_;!Q_Lngnay]t’?(g’x’y)dﬁ ’

ihe formula of Groebner stated in III,.H.

Proof: Since D is analytic, it c¢an bo majorizcd by the operator /y whi-.
is in one variable only
N

D (= =

(1- )

dz

(ef. e.g. Groebner /22/, p. 30,and Groebner-Watzlawek /22/, p. 225).

Thus



: 8
(6.2) ID5%1y| < a%*Y, - (2823)(28°5)... 1N
03 (1-2/0)°%"2

Hext we shift the initial values y to the origin and choose
h=X-x sc that

(6.3) l¥(e)| < & .

[ TS

()| =5 for xsgsX.

Inscrting (6.2) into (5.3) we cbtain

X s a - ) 1
(X-¢) - . us 1
IRSI S l‘_s‘!'- (25 3)(23 5).-.—ﬂ—vm+—m}d£
e 0T (12 (1-2)°87%})
\...--..«0-.-" _~...._a
<28(2s~-2)(2s5-4).. 5228“1 <2 s-1 (6.2)
228,51 ‘223-
Hence
R| s23® o e0Sth o o2 [an:x-gljﬂ*i
3 031 s+l B(s+1) L,
and thus
lim R_ = 0O
Srco )
il
o ..
M <.1 or 1 :lxl.X.ls ﬁlﬁ .

iteriarks.

1) A second proof of (5.2) is possible by inserting the infinite
power series into the integral and assuring uniferm convergence
shich allows interchange of summation, integration and differen -
“ietion.

/) 3till another procf (the historically first one) was given by
spébner by recrranging the nover series for the solution Y in a
special way (c¢f, e.g. Grdbrer /22/,p.35, Knapp-Wanner /29/,p.29j.
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1V.7. A General Process

Formula (5.2) has resulted from inserting a Taylor series solu-
tion into the integral of Grtbner's integral equation (1.4),
This leads to the idea to insert any approximate solution
?(x,g,y), say, of order s. We thus obtain a new approximate
solution ¥(X,x,y) given by thec formula

~ x— ~t
(7.1)  ¥(X,x,y) = Y(X,x,y) + [ [DY(X,6,9)] o g .
X £,Y(E,x,y)

Theorem. If ? is of order m, Y is of order s, then, under
appropriate differentiability conditions, Y is of order m+s+1.

Proof: Because of the ordcr-conditinn, the crror of Y is equal

t
4 (x_t)5+1

error of ?(x,g,y) Tl

F(X,(,y).
The error of Y is now obtained by subtraction of (7.1) from
(1.4)
r X ~ e
error of Y(X x.y) = [ [Da(error of Y(X,£,y))] ag.
X E)Y(East)
Again, as in section III.6, D, contains the factor (g-x)™
and we thus have

. - (x-£)°* (e-x)" 3 :
error of Y(X,x,y) = i —?EfTTT"-—?ﬁ—'G(E’x’y)[3§F(x’£’y)] de .

o
£,1

Since (X~£)s+1(a-x)m does not change sign in the integration

interval, the mean valuec thceraom can be applied and yields

X s+1 m
(X-g) " _(&-%) 4 2 re |
Y(X, = TTT'_E' G(8,x, F(X,0,
error Y(X,x,y) i = =7—dg G( ,X,Y)[ay (%, .Y)Je %

r——— m—— - — e’ ’
(x-x)]'l"fs“z
(mes+2)1
thus, Y is of order m+s+1, Done.

(x<0<X)
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Remark:. The Theoren in section III.5 is related to this.

Hence, to cach pair of methodz with orders m and 8 and with
solutions ¥ and ¥ resp., fornula (7.1) leads to a new mcthod
with order m+s+1 and solution Y. The Lie series of Chapter III
is obtained by inserting m arr! s terms of the power series
expansion,

Iv.8. Iterated Integral Equaticnus

Still further integral cquations are derived from (1.4) and
(2.1) by iteration:

X
~ - ~ =
(8.1) ¥(X,5,.¥) = Y(K,60,y) + [ [Dy¥(X,80.¥)], dgy +
€s 24
X X ' .
+ I f 1.02[92"(3(;52)3’)]‘ -|o\ d€2(151 v
o0 &1 Zp g

and

A x ~
(3.2) F(X,Y(x,go,y)) = F(X,Y(X,6,,¥)) + / [DZF(x,Y(x,;iay))]Ad:,L
) : S
) 1

X X
0 &1 Z2 %4

where %1,22,.. denote the following, substitution rule
(8.3) 2y = Ryl (En ey gD

Still more gencral cquations are derived after rcpeated
iterations.

The following theorem is obtained by the repeated application
of thc preceding theorem (section IV.T7):
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Theorem: If ¥ is of order m, ¥ is of order s, then, under
svpropriate differentiability conditions, ¥ which is defined by

A

(8.4) T(X,£,.¥) = ¥(X,e_.y) + [
: go 1

[Dz pzy(xsgzsy)l,\ ]2 d£2d51
1 o “y

ie_of order 2m+s+2, Done.
Zerarks: 1) The insertion of 2 power series for Y leads to thc

serics with multiple integrals as given in Wanner /51/ ,p.T3-T4

2) The order of the analoguous formula with an r-fold
integral is rm#s+r.

1v.2. Iteration methods and convergence proofs

e forinulas (7.1),(8.4) etc. can be iterated in many ways.

incre are possible iterations with respect to ?, or with respect
co ?, cr both. A number of mecthods sppear as special cases. such
wo the itceration methods of Picard or that of Grdbner-Knapp, the
moshod of Poincaré and sc on. For a few of these iteration
me-hods convergence proofs ana error estimates now are given,
~ci* others we have not yet iound them.

17.20. The Iteration Method of Grdbner-Knapp

This method appears_ when (7.1) is iterated with respect to
Y whilc for Y thc first s tcerms of the power series soluticn
are inserted. Thus we have the iteration proccss (cf.(5.2))

(L‘\.l)

‘e 5 Xeo oy
() = Y@y ¢ [ E i)
: 13

dg
a=0 X )

LG )
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.'.'i:»l‘.'
(r)' _ 3(x) (r)y () _ (r) 3
v 3 (L,Y ) Y =% + f (x,y) 3y

starting with Y(°)= Y.

The convergonce iollows r'eom rauetion (IIL.5.3) under the
conditicn that DS+1y satisfics o Lipschitzcondition. If the
Lipscluitz-condition is assured cnly in somc compact domain D
(as usual with nonlirear cquations), further considerations
ar2 neccessary to assurc that the iterated functions Y(r) do
not Ieave B:

Thborem: Assume that the Lipschitzcondition (IITX.5:1) for the

L] + . [ ) .y . L]
functions D® Iy is_setisficd in the domain

(10.2) B = {(g,n)|xsgsx+n, |ys-ng|sb}
~
and _that tnc aprroximat: colution Y sztisfies
mn+l

(10.3), ¥ (ex0,y) - Y (e,%.)] 5 M l%- -

for xsgsz+a. Further h={-x shculd satisfy

. x.l+1 L )
) i1 =2
(10.4) i1 m+1 TS 3
I !
(10.5) 1L (e, y) - vt o5 XSESX+h
S+1

¥
< nh
s

ey (e 3T T ey ¢ 1

Ther the iteravced golutlons Y(r)fg,x,y) of (10.1) do not lcav

—-n—-......-—-.-.——.—.g---'

and_converge to th_aolq}¢on_l{§h_thu coror ectination

i ofor xsgzx+h vnd the iter-tions arce arbitrary oftoen possiblc.

(K_njg- x?°*1)r
(m+i+(s+1))?0

(16.7) 1¥,(e,x,5) = ¥ (,x L0 < il g™

frooi’ 1) PFirst we saow that thae functions AP agzain
(e+1)--times differentiable. since only for f,.-Fs the
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formulas (5.2),(5.3) areyvalid. This we simply show by (s+1)-
times differentiating Rg in (5.3):
Using the well known formula

s+1 X s )
d 8D g(e)ag = g(X)

axs+*?
we obtain
3+]
d s+1 s+l
R_(X,x,y) = [D°"'y] - [D°"%y] .
axs*l Tt X,Y x,¥

which is continuous. Now thec assertion follows from the fact
that Y(X,x,y)¢ c5*1(cf. section II.1).

2) Next we confima that the iterated functions do not leave B:
Pirst by (III.5.3),(10.4),(20.6)

Ml c_x!m"'l Ksnl E'X|s+1

(10.8) |¥;-¥{1|< s
jm+1)! (m+2) .. (m+s8+2)
sg- g1
again by (III.5.3)
(2) I“E"le"‘i Kc.nIE"xls“i Ksn|€_x'8+1 -
(10.9) |Yi~Yi Is = <3
‘(m+1)! (m+2) .. (m+5+42) (m+8+3)..(1:+23+3)
b,’--.- ~ “ — N
3 <1 <1
and 8o on.
Thus by (10.5) and the triangle inequality
e ey e
b b
] %7
(10.7) follows by induction from (10.8),(10.9),.. by (III.5.3).
Done.

Remarks. 1) The number m in (1C.3),(10.4) need not be the
greatcst possible. Perhaps somctimes (10.4) may be less re-
strictive for smaller m; (10.5) however is not.
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2) The thcorum is cczentially due to H.Knapp, the
we0el 1S new. '

3) We already have a convergence proof for an
arhitrary ?, not only for finitc sections of a power series,

and we are at the present working on its simplification.

IV.11, Picard's Method &s Special Czse

The method of Picard comes cut from (10.1) by pucting s=0:

W
n

A(r+l) (r) e ()
Y (X,x,y) = YV (X,x,y) ¢ i [D2 y]E’Y(r)dc

r

¥ X
17 oece, v ag- 1 e (g, ¥7))qs

"
]

e g ‘
+ [ £, (g,x,y))dg,
X

Mich is the well-known iteration of Picard,,

V.12, Poincarc's ilethod of Paramcfer Lxpansion

v3 (7.1) iverated with respect to 7 while ¥ is kept fix, we get
“oincard's wmethod of paramctor expansion; i.c., we obtain the
solution expanded in powers of a small parameter.

To show this, assume that the operator Da is multiplied with

a small parancter, say c:

jr
[
[
18}

B )
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o X
(12.0) Y™,y = Ty v [ T x,e]  ae
X

£,Y
starting, say, with Y(°)=§. Inserting for Y(r) again and again,

it can be secen, that Y is éxpanded in powers of e(in simplified
notation):

r+il
(12.2) YD) = § 4 ofp3¥ 4 2fDIDIT 4 ..u ke j..,ruz..nzy :
r+1 r+1

Subtracting this from (8.1) (more precisely: from the (r+i1)=-timc:z
iterated cquation similar %o (3.1)

(12.3) Y= ¥ +ejD;? $oaes # er+1!~:~]12;~..259 + er+2uD;..D;Y )

r+i r+i r+2 r+2
we obtain for the error
+1 +2
(12.“) ‘ Y e Y(r ) r IOOIDzil 2 .
r+2 r+2

We again consider the exanple
y' = /k + /¥y, y(0)=0

which is known as an equation which poscs difficulties to a
numerical integration (ef. Rosser/l2/, Cooper/8/). Again let
f=z v, p,=0"

2 7Y * Wy

Then the above expansion beconws

y(x) = % x3/2 4 (g.g T4, + 3 1424 Vg'%§ I 4 oloon

which, for small x, gives an exactitude of hundreds of Runge-
Kutta steps.
A convergence proof of series (12.2) is given in section IV.14,
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The actual dectermination of the series (12.2) is mostly ecasier
by the usual cxpansion as c¢.g. it is described in Knapp-
vianner /28/, section IV.2..

IV.13. Powor serics as_speeial casc

Put

then N
Y(X;x.,y) =

and the process (12.1) reads as follows

(13.1) ¥ (x,x,y) =y ¢ I £(E,y) 4 Y“"(x £,y)dE

a'method, which i3 connected rith 2 power scrics expansion

in thac following way:

Proposition: In the case ¢f sutcnemous equations, (13.1)
coincides with the method of pouer series:

This is scen by induction: For autonomous equations f(x,y) does
aot depend on x and we have for (13.1)

Y(r+1) .

]
<
+
La]
~
v
g
|:v
S
<
~
=
S
~~
>~
-
'ﬁ
-
<
~r
[« 9
o™

Thus if r -y ) O
y(r) . ) K=z D%y

then r v oo
Y(r+1) =y + Z D J Sk_'_i) dF DGJ

and with B=a+1l

(r#1) _ Tl (z- x) e
b ) 77
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IV.14. Cunvergence proof of Poincaré's method

'/l

The following convergence proof of the iteration (12.1),
starting with an arbitrary analytic function

™ R v
1 (x,x,y) = | 35;¥l- DYy
V=0

has been worked out together with XK. Kuhnert.
First get a majorization operctor

8= Ty 5
for D, D, Dy, as well as eD, = D,.
Then
(14.1) 1(X,%,5) - ¥ (x,x,y) < 2 Er(;)izi%liA°z.
B

wherc the symbol < denotes majcrization.
(14.1) is proved by induction:
&l o
Y(X,5,y) - ¥ (K,x,y) = ] an%l_ (0% - Bjz)
o)

os

<2 I (g e

0w=0 Sy
=1
r+r+l:
X
(X, x,y) -~ Y(r+1)(xsx9Y) = ef [D;(Y"Y(r),]h dg
X 4
1
X w )0
<< [ (82 ] (“)15—52-A“z] ag .
L r al © 2 Y
X a=r £ 2 =X AYZ
’y=0 ""_}Y 'L'

Application of the comutation theoren (ef. e.g. /22/,p.17)
and rearrangement of the double sum gives
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™ L2 ] g (P ( gg-x) ag.avtotl,
asr y=0 ]
(X~ xla+y+1
(a+y+1l)?

and with B8za+l+y
! : () -1 - f
S S NN L =L

(rgi) Done.

Next we transform the initial valucs y to the origine and sum
up (i4.1) for r=0,1,..:

AHEC

P O asr
- ™ X3 u
2 5 I 38
a=0 'S0 )
2

which convergz:s for
- ( -—f—
‘X lni - 2]\! .
Thus it is necossarily

1im (v-v{y - o
Y-913)
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Chapter V

Runge-Kutta Processes with Multiple Nodes

by K.H. Kﬁstlunger

Abstract:

»
The use of the differential operator D makes it possible to extend
the methou of Runge=Kutta in such a way, that the power-series
method, the classical Runge-Kutta-method as well as the proces-
ses of Fohlberg are contained 2s special cases., The generalie
zation is in such a vway, that not only the funotions fi(x,y)
are evaluated at some intormediate points,but in addition also
the functions Dfi ’ szi y eee Dmfi +These new methods are
advantageous especially when combined with the concept of re-
cursive generation of the valucs cf ani = Dn+1

in Chapter 1II .

Yy » a8 desribed

We firet develop, the gencral form of the conditions for the
coefficients of these processes thercby extending the results
of J.C. Butcher / 1/, These equations become still more compli-
cated than those for classioal proossses.

Noxt it is shown that to each quadrature formula with multiple
nodes thore exists an analoguous Runge-Kutta proocess with the
same number of nodes and with the same order.This again extends
results of Butcher / 2/.

Fehlberg's method is shown to be nothing else than a generalized
Rungo=-Kutta process with onc m-fold first node and a few additio=-

nal single ones,

Finally we give examples of explicite process end numerical examplc. .
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Notation i

Let the following autonomous system of ordinary differential equations
be given

(1.1) yi= fi(y1,...,yn) or for short y'= £(y)
with, the initial conditions
(1.2)  yy(x)= ¥y, or y(x,)= v, ‘

Here we ¥reat autonomous systems, sincc then the following theory
becomes more simple.Thisy of course, is no rcduction of generality,
what can be seen by introducing X=y, @8 new variable with yé =« 1.

Are the funotions fi analytic in a neighbourhood of Yio? then the solutir:
ot (1.1,2) is given by the following powcr serices

. 0) .
’ < h_ k=1
1.3) y(x)-.‘:__ o y] - 7 b,
+ith the differential operator

n
( - S s &
(1.4) D PIRI -

=1 J

Afgain the symbol ["']o means that after all differentiations the initinl

values X, 1Y, are to be inserted.

Elementary Diffcrentiels

W e o e S AN . S o o - ————

Definition:(Butcher / 1/, p.187)

{h := f is the only ‘one clementary differential of order one;

o ar St s

is an elementary differential of order r and degree s ,if P, arc

e matee - - ———a

elementary differentials of order r, :

order r: = r1+...+r +1

degrec s: s= number of Fi which constitute F ,

— e . com——
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more generally:

B B
1 (4]
(1065) F-{F FOPRPRY } = {F oooF 2 o'o'b, eooF }
1 c 1, 8 [+
by e
is & elementary differential of order r and degrec s,

where
(1o6b) In p1r1+...+uar +1 t'.}_!_l_d 8= u.1+ooo+p.d g

In this notation the exponent may be zero also ; we also define
0 0y .
(F.'IOOFG} o: f .
Notation convention:
For simplification wc now introduce the following notation:

if Vyyeesyv, arc veotors v,= (vi1,...,vin), then we denote:

8
(107) VyoeeV g—' - ' v seeeV e e——— S
17778 gyt ;§;77773;=1 Wy Wy Oy eeeBYy

more gonerally: with

(1.8a) 8= ;E;"i

e write

L .
(1.8b) V1 ...vo. 'd;? = 2’10.011; - onooo-Il-g'd';’"s' .
f kg

iloing this notation (1.5) and (1.6) now becomcs

' a%s T T B O 4
(109) {FyeesFy} = FioeoF, ;;; ) {r,".iF, } - F, vooF, dy'

The following theorem about elementary differentials is due to Butcher /1

Theorem: Dr'1f is a linear combination of all elementary differentialg
F of order r with positive integer coefficients a:

<
Ord Far
The coefficient a of Fa{F, «..F "} 18 given by

(1.70) D™~'tu ¥ ar . 1)

e aw - 6T e CERCEEREED G SN S WIS @ W VD BT WD W W W

v—
1) The symbol -1r1r—-denotes, that the summation is over all elementary
by =]

differentials of ordecr r,
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g LI
R L el o
i=1 "i° is

vhere o, are the coef:icientg of F,, r, their orders
and r the_order of T.
Fxamples:
Df— {(f}
- {{£1) + (£°)
D’f= (O£ 1+ 3{0 £ 8} +({ £3) + (£7) .

A List of all elementary differentinls up to order eight is given
tn/9/y ppe 191=193,

oy

©+ next modify the arove theorem:

r.-1 r
%63 WY e f= D iya E ~aiFi we have
Ord F,=r
i
r 1‘ o w—
\‘1012) ( (D y)ooo(D y)) - "‘ ORI ) ‘ G1-..Oz {F oooF}
Ord L1=r1 Ord F L
Troorem: It holds that
r-1
o —— 1 a1
(1.15) Dyﬂ Z 7 ?'o‘;""—‘:"‘zz:—! (D y)ooo(D y)} )
t=1 r1+.n+r aral ©° T4t
r 2 1 t
-‘if

Proof: Imscerting (1.12) into (1.13) wu obtain

'{" T—. = !(.r-1_)‘l . i \' o ees Z ~a1...at{ F1.0.f )
: 't'l"1 1‘1+...+I‘t=r -1 % vl 1 ord t-r

> 1
42
IY ig eagy secn that 21l c¢lementary differontinls of order r appear
ir this cxpansion.If we pick out on¢ of these, say {F1 ...Fd }

""".‘L H() -T'ﬂ—w(r-')!—ﬁ'l—: (%')uj -

3=1 S R 5=1 ¥3
This, however is cxactly the coefficient « o
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Power Series for the Rungeo-Kutta Approximation

The olassical Runge-Kuttaemethod uses the following formulas for the
approximation J(x):

n
A
(10140') y(x);- y0+ h g:‘-oigi
and n

(1.141p) = f(yg+ b T

f_T JGJ) o
These fermulas arc now generalized in the following way:

n = nurber of nodes(stages) of the method
m = their multipliecity

(1.15) ggk)- (Dky)(yo+h;r* b(1) :Z;b(2) (2) +__ ;Zlb(m) (m))

(1.16) F(x)= y°+hf’i°§1)g§1)+h2ﬁ# i ) (2)+..-+h iz__;,(m) 2()

Remarks:

1) For m~1 wo get (1.14) again.
2) For simplificity we put

ng)-o for k-m+1,m+2,ooo ’ 151,2,ooo,n

(1.17)b(k)

iJ a0 for k'm+1,m+2,ooo ’ 1’3‘1,2’000’n

3) The assumption that all nodcs have the same multiplicity is not
restrictive, Otherwise we put
M= max {m1,...,mn} y my= @iltiplicity of the i-th node

oik)-o for ke mi+1,mi+2,... y i=15400yn

(1.18) b(k)

1} =0 for k-md+1,mj+2,... ’ 1,3’1,uoo,n

Theorem (Expansion Theorem for Runge-Kutta ):

a) gik) posesses the following pgygz_ﬂeries

k), (k) :
(1.19) ( u‘-‘a“’ i
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. vhe vectors R§k) arc determined eoursivly:
,

(k) . ok
(1.20a) R{) = [D v, k=142,

k) <o ¥k
(1.2°b) Rj(_ ) /\/" "Lr"- f/;_ ";'.-".P‘.—.u-" Sj ooosi % —TE D y
. A~ I 1 T/ dy 1o
“i>1 k=1,2,.oo N u-1,2,oo.
(1.21) S (" " ”n”' 1,2
L ] i ‘)." T » , ’...

b) The approximation of the T'unge-Kutta-mothod has the following

expansion:
s il
n

o
A =
(1.22)  ¥(x)= Yo* %{T‘- Tu
u
| w o Akjg(k)
(123 1. o goefel,

Proufs
1) Since £ is annlytic, it follows that ggk) posesSse¢s a power-serics

oxpnnsion (1.19)

) " ¢ QY
2) y 43 b '5: (T)},( GRITIES '2—.."1'; Zb(")g(") (1.19)
d 1 . o
SIS SRS
C n s +CC
g 5 ALyl BE p(v) |
‘31! 7 4 5%3u’ JoH
e 9] T+ o
0y S b sl (Dple) (ugusn;
Vordey o Tyt Al L° £5 e
o noH n (o "
e h e W (thp(e) % b .
Yol iqul ;—_—7(1,}..-:_7"’13 Bpier = o 20T By 7 Yoy
= A u= =
with
CcC [
' =S b
(1.24) vy= f:1 T si,u
L T s\
N I vl A S ('r) T
(1.21) s é"{(ﬁj'{iﬁ,hij R



°r

o Vetla

fos) 00 h
ZT Z{n u' Sin“'siu T -
L N ) , ’tdy

Lt ! aT
1.25) 5 = 3 —_—

S ...S —
“"Tu u1+...+n =1 u1!ooout! i,u.' i,utdyt
T
%, 9 1
i
1) Taylor's theorem for multiple variables with use of (1.7 )and (1.8):
(N T
le o < l T:d
{%.26) ;(yow)- RN e f]‘
=0 ‘dy

5 el (%) (g ev,) (1226)

0! s
k 1 ot ld’ k.1 (1.25)
‘ -— — )
& y]o"':{;[ 7t Vi [dyTDyJo d
T -
ik 18t ! r—d kvl -
lDyr+"r! P P B UILLEL I -t
T et wgd e L "™ "rldy Jo
%, > 1
i

(] 1} T
k - nt 1 ! a* .k
Dy + —— - —-—L—S .'.s _Dy
L ]O ZT u! Tér r!mu.l!...u‘r! i,u1 i,u‘r T

wg 1T

L comparison with (1.19) gives

(i-202) Rj(.l:‘),a [y,

k) %o— 1 < p! at k]

(1.20t) R( . - —o—e S cesS — Uy

i4p f:TT! u1+...+u =y 1 Pooo 1y% 1yky T|dy 1o
1 7

D w0 ggn ol NPt T ofF)g® (121D

ok 3 oefk) (1219

k= i=1
2y 2 @ i
k= {k}e=h" (k) |
Yot B ofS Be i)

(k+|'z").g_ 'Z_ j(,k)R(kz (ktu=x)
s ECRE

(o0] ] n : w L.
<~h" <-_ul (k)pix) h
Yt L WT &=T(n-k)1 PECH Ry wek yo+u;u! T
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nith
(1.23) T = "1 (k) (k)

o E&T ?7:?7? ;E% ik Done.

Connection with Elementary Differentials

N

Theorem: T, is & linear combination of all elementary differcntials of
order w with coefficients f.§ :

n. -
(121 0 3 Tu-_k)'s{— ofFafk) - 2P,

where B¢l and @ has the following form

+(1.28) @= ¢(1)+...+¢(")= ;i;c§1)w§1)+...+£§%c§”)w§“)

with
(’5’ n y
(1029) ¢ 2 s ch(.‘)&"i(.k) k=1,ooo,n ’
i=1
ng).nre polynomials in b§§) over Q.

Prcof: First we show that

(1.30) R(k) bt

i, u-k f‘m:_—"‘ﬁ'wj(.k) [FJO k=‘-‘1,oc¢’u H 131,o.o,n H u-1,2,...

Mew the vight hand side of (1.27) is proved by inserting (1.30) inte
the left haud side of (1.27) using equation (1.28).

The proof of (1.30) is by inducticrn on u:
¥=71: here k=1 and

(1) (1, ?ou)" ) Cren

,\

induction from n=1 te «:

1 - oy 1 v !
(1051) Rg,z 1 }:___-_B'!‘:(L ) t ( I=1yaeagpt § U=lyoeayu=1 ) ;
ord F=y
then
R(k) (1.20b)
i,u-k
= ERCEITN s, A gy (1221)
1:7!' T! ’“———21.*..'-’—:-_51—;;":}’ 1‘.1.'!...711_! i,u1 ,u ]dy }

ul} 1
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wek n

1;1{;.;.4« = hek a -1 dL"l (1 * !'?:l; !! (6:)”.(::)).

n n(c) (d) (ay) (a,,) a® _k
;1 f"‘t SHRRES ) 31”‘1"’1'“RJ = "1[;"]) y]o

T T
Inserting here the induction hypothesis we obtain,after some computztio:r,

(1.32)

T
a linear combination of cxpressions of the form [?1...F a Dky] ’
dy <]

where Fi is of erder LT

In Lemma 2 (p.80 ) we shall prove, that the above expression is a line-w
combination of elementary differcntials of order (u +o0otX +k)- % where
the coefficients are natural numbers. Done.

Corollary: it holds that

(3a)  wff - LS e,

d Fan

roof :Inscrting (1.28) into (1 27) we nbtain

= o (k) (k) o (K)g (k)
£ f‘?o (u-k)! Ri Hek ord Fex E:; ;E; e LF]

L] n
L St e

Hence follows (1.34).

'

This thoorem suggests the following definition of so-called
" alementary weights" (Butcher /1/ p.194):

Definition: To each elementary differential F= {F1...Fs} corresponds

an clementary weight f= [¢1...¢‘] , where @ is the
corresponding cocfficient of F in (1.27).

Remarks:

1) In eddition equations8(1.10) and (1.27) adjoin to each elementary
differential F a number « and a numbe¢r . The correspondence of
a, By § to F shall be expressed by similiar indices.

2) In contrast to F the coefficients «,B, and ¢ do not dopend on the
function f of the differenticl cquation (1.1).
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The next task is now the computation of @ and B:
for this we insert (1.34) into (1.32) ani use the farmula

("1’) ("1'61) ! 1

»

°1 ui! = di! '
a(k)
i n=k .
’x‘-.-—-k -— ' <~ wag)t P1 P
L‘l‘ L L **° vl %, 1'% 1
T= W1+...+u =H=Kk Oord F1==u1 ord =% 1 T
oyoa (o) <a) i ,) (a)
(B 8t ) B o Been 28,
0'1=1 1 1 T dy c
e S” S %2 nol)t -ﬁ" fl,‘*'{fi).
-rl:T u1+...-Fu = K=K ord F1=u1 ord F -u -1 1‘1
%, 31
1
(1.35) T
[ yeer, 4 0%
with T dy 0
%
1 4 (o ) (0y)
1. 6 (O):' Wil = b l 131 see .
( 5 ) wl,i gla 01! é_{ i,] 1 ] ( ] ' T )

The insertion of (1.35) in (%,27) gives now with xer:

ord Fsrw[ﬂ
(k). <~ < rrj-d- P
/ sed / — > sy -y .
l‘cé:‘l f:T T=1 r/+...+r =T-k ord F,=r ord F =r iU (1'-'1 ”1! l’i/
r;3»1 L L L

(1.37)
JAF at k
‘Lr1oooF _D ] .

Comparing the right and left side¢ of this identily, we now obtain
recursion formulas for # and P: for, on the left side B and § ocorrespond
to F, which is of arder r; on the right side pl and W{?i correspond to
Fl, whose order is smaller or equal to ret,
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Conditions for the Parameters

Jor me1 in (1.15,16), hence for the olassical Runge-Kutta-method , the
somparison in (1.37) is ecasily done:
because of (1.17) we have

?§?z jL1p§;)W(1) and oik)so for Kk=2,%5¢¢¢ &

Hence (1.37) becomes:

Zai? e -

NS z! (1)g( )\
;E% 2:; ry +...+r T Zz; F1-r1...,i44-;rr i: ( ;:*bij g )

: [{ FyeeoF, }]o
If we choose in the left hand side a fixed elementary differential,
say Fs ( F1 ...F } with ;f'pi-s, this appears in the right hand
=7

side with the following coefficient:

89 (] = ; o{M 2L (—fl-:(rl)‘*l (jZ{b(” (1)) } "1‘"%' 0. -
@ 20 L (i) e,

“he factor al is due to the permutation which are to bear in
u1'ooou°,!
mind in the sum .

1‘1+...+1‘e-1'-1

Comparison now giyea

8
om) e

() T (1) <1>“1
(1.380) Eci 1|.1(;lb ¥ ) ;

These are exanctly the formulas of Butcher / 1/, p. 194-196,

1)

1) The cocfficients P defined here differ from those of Butcher, His
coefficients are obtained by puttin f'=p/r .
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For m>1 this comparison is more compliocated. First we need the following
two Lemmas:

Lemma 1: Let uy be functions of Yqreees¥, and sufficiently often
differentiablejthen with %

" n1i+...+nsi it holds that

as
5 s by Wit asig)=
1 Js "y Ky,

(1.39) - - 9 ‘u, L .
T e M K1 Myg “et
1177t g1 *""* st ayj ...ayj ayj ...3}'3
u1i%o nsiarn 1 8 1 5

Prcof (by induction on 8):

4 ®y
=i § < 9 ‘uy 9 ‘u, ( since %, =x,)
e (u ...u$)= P, m——mel lpdene T = 1174
oy 1 S U ]
31 n11+...+u1t=1 ay 11 ay 1%
"y4%0 Jq Jg
Egl-u u, +u 323 u u, + +u u 221
ay 2.0' ,t 1 ay 3.0.-t s00 1..0 t-1 ay [ ]
31 32 Jt
Induction from s-1 %o s:
3® I |
Y < +ee0y. (2gec0uy)= oy (ayj' T (“1""“t)) =
d17 Ty VT Ty
( by induction hypothecis with ul- u21+...+:¢i ) y
1 t
3 ( - ] u, 0 ut
s= epm— cee s/ (XX =
Yy % % %, )
‘31 n21+...+u9t=1 us1+...+us£IT 3y 21 81 2t st
& . N o.-ay ay oooay }
Hpy2 © Mg %O da Je I Je
(by commutation of %; with summation sign and by (1.39) with s=1 )
3
Y1 au{+u11 “é+”1t
) u, 9 uy

< < c———

/ Q../ - - u‘ u e 00 n n [ ]

n11‘;ooo+u1t=1 n81';05.+r¢st=1 6:7'3.1-006:)'-81 ay 1t...ayjﬂt

%143 © Mgy 1 Ig Jq 8

Putting now My= I+, = My tesetn , we obtain (1.39).

Done.
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For Lemma 2 we need a further symbol, which is now defined:
»
Dofintion: Lot Fa (5'11...5' "} = (F;...F) mith opdor r snd

p= u1+...+uu y and ?-{ %1...?t) with order 2 1)

be olemontary differentials. Then we define:

u
1
(1.40&) f*(nik;F.',...,Fn)- {1}*(1‘1k§F1,000,F“) o= {F1 oooF ﬂ )

(' o4°b) %‘*(uik;F1’ooo,Fn)= {’5\‘1 . ooﬁt }*(uik‘F1, oooypn) =

(o) (o),
{F:‘" ...Fu 4 (u(’);F,,...rn)...?:(ug);r“..

where

1.) uii) non negative inteser;
2.) set of indices for uii):
i’1,000,1‘
(10400) k-h...,?l

1-0,"000,"
and for u,, @
131’000’7‘

(1.40d)

k-1,ooo,?

(1.40e) 3.) &)-u with :Z +k (?03-1) .

Convention: If misunderstandings ure not possible, we shall write for

P (g 1Fqre0esFy) shortly P(ng,) .
Zxemple;
u1 un A A
Fa{F, ...F,"}and Pa{(£}f)} : honce F=(1n , Pet
A A
r.= 2 9 = 1, o= 4;
(2) (@) 1 e
BN @M m My (o (o) )

(1) (1) W1 ()
?;*(um)- {F F {F12...1‘"2}}

A ”~ A A A A A
1) The quantities T, Gh a, a, Wi corrcgpond to F ; Tyt %o Bk, 3&, wk,i

corrcspond to ﬁk .
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«(0) (0) (1) () ) () (2)  (2)

] 3
1 ...p {F Lk ...r ™ (1 o “n2 ) (r, 1 seoll )y

P (n 4

1k)-{
(with (1.40e) )

n
*11 *12
-(F1 ...F ‘F1

L]
1

*x2.

13 "n} "14 *x
ooan iF ooan }) (F1 oooFﬂ 4}}.

] % , A
Lemma 2: Lgt Fe (F,'...F ™) ={F. .} and B F,.F
then it holds that

% % D
F11000Fnu.d— a-
ay®
.-L- L] ! A*
(1.41) 5 oS ( i i';,'z'.".'.'u'J"Qf)F (%3 3Fq s efy)
u11+...+‘n1g-u1 un1+...+un£-nn J.1
% [} N .20

kv
W!t P= u1'.’ooo+nu °
The el¢mentary differcntials a*(uik) have the order r+@-1

proof (by induction on T ):

gﬂ: Hore a. f and uik-ui (i'1,ooo’ﬂ) °
From (1.40a) and (1.9) it folluws that (1.41)is satisfied.

Joxt the following summation rulc is valid:
1‘ 11<12<ooo i <t’i

k k+1
(1-423) A= 0O L qtecet0 (,".1,000,‘:)
5 Oy o
then
v-‘ (00.) -
( ) 6.1‘+ooo+6t-6
1.42b <
Z-—- e P B .-.—0007- (ooo) .
61*ooo+611+h1+ooo+hk-d 611+1+o o+612-A1 dik+1+u.+dtihk

For simplification wae definc thc following scts of tupols:

(1'4}) Klgi)' {(“lﬁ%)!"'!u}(:}f:) 'nxsg)>° (J'1yooo’i"1) and ug)h..-o-ué;i-u!(f.

Induction from -1 to P:

vith (1.43) tho induction hypothesis rceds as follows:
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(1) @) o, (),
Fil v P? ——(-d Bad .. i EY
(1.44) 1 d ) x{t) (i)U'1u*7:...u(17!)F i’ )
nith w{Pes el i 1) v (dm1yeeeyt)
Then
u1 P A t
pals .F“dypr-r1 cooF p(i?1... -d-;{f‘)(l)
<~ 5 011 2op a"m@' AT T Y, ,
°1o+'“*°1t'1m"po+“'*"pt”( . dy"m 1)'"(1 25 d—y:@)“f;‘
o
'(F:1°'00F:p° d—“z(s;;t f) (g)
w0
pn " Bt JE e
$°y+...+u$ﬂ-u1 (o) .+u(t)nu (J ' “(O)"""(t) ) :):-6) v
(%) (¢) (t) ., (o) (o) (o)
A2 u" d“ ? "y L q* +t (1.44)
ooo(F1 ..-Fn d—y:(?)'t>o(F1 ooan Wt)
3 e 3 P (
u$°)+---+n(t)-1 uzo) +n(t) " K(1) K1 K(") %,;;5 Jm oot
R () (0) () 044
: (1) ®
| .m’ 2. !...uﬂ )( V) ee P (n )F1 F "—(577 )
(by reaveanging the sum signs and using (1.9) )
full |
S PO S I [ ).
516;:..:@-1;1 K1(1) Kf) (5.,. +uQu K(1) K%;)JJU‘l ugé)!ugu!...ug;& 1/

(0) (0)
NEA ...Fn“ Pl i) }-

( using (1.42) and (1.40Db) )

n,!
3 o 5 o
1 R % ik
u$°)+u1(12+. . .+u161). -"1 u,('o)"'u(‘)‘.'o . o+“1€2‘ Bun (3-1 uSOT! u|j1 ot ‘uggt!

1 n
( using (1.46¢) and “1(0)'l "ﬁ) ) 1

S ey

u11+ooo+n1 1

Ky Toe ""“ur"’"n (:)H 3
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‘1) : This step 'is verified by transscribing into the sum-notation
(of. (1.7,9) ) then by using (1.39) and finally by transsribing

back with (1.7,9) .
°13  Ipi
(2) : This step is verified by colleoting together in F, ...F;

alz slementgry differentials which ocour multiplejso we obtain

F1 ooan H

lot Fk1-ooc‘Fkn = F1, where Fkie{F1,ooo,Fp}
1
Then “1
(1-453) u$i)- ‘_dk i (i.o,ooo’t) and

1=1 71
(1.450) %= jzus-") :

=0

Finally we comprise the sums with O i and obtain

1l
<~ el ST (“o(uB}nG (1.458,0) )
APCTTrT et ST Ay
%4120 1 khiz “
"1
- o 1A SR
n$°)+...+n(t)-u1 “$671-°-"$ Al

Analoguously the exponent of F2""Fn and the corresponding sums
are compriscd.,

Next we prove by induction thnt

n r
At 4 :
F'(r,,) has the order g HTy 4P, (where "y ég L )¢

n
induction hypothesis: f”(u( )) has tho order ‘:'u(i)r #?i ((dmlyeeeyt);
i jLT h I

then (O) (O)
r*("ik) {F ...F *(u(1))...?*(u(t))} has the order (by (1.6b) ,:

5— < (i)r AP 400 o4F 4= < (:i_n( ))r o (12450) :Z:u,r £ .
i=0 jLT j - 1=0

] n

Tinally F= {F11...an} has the order ;Z%ujrj +1= ry and hence
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?*(uik) has the order r+f-1,

With this the proof of Lemma 2 is completed. Done.

%
Corollary: F1...Fu Q-I-Dky is a lincar combination of elementary differcr.-
dy '

tials of order r1+...rn+k. This has been used in connectigp
vith (1.33).

We are now rcady to prove:

Theorem: The elementary Veight f= [f,...f] corresponding to
Fa {FyeesF} is determined reoursively by the following . -

formulas:

¢ , corresponding to f, is given by

(1. 462) ¢ = iiyi1) ;
i=1

§ , corrsponding to F, is_given by:

n on (A)  (a)
1.46b) - (] = i j" O(k) —-LIC-J)-!-—‘I’ ] eee¥ ;
: e oot = 27 £ ?\T;;..-!-At-k-»f Apteecd b 71,1 70080

. ﬁ;o

whero w{"}) (A 21) corrspond to B, (ofs (1.28) ) and
9
(o). & 1_ =, (0)y(0) 5
(1036) \1’1’1- OE-'T G! ;—bij \yl’j 1-—1,oio't []

u ¥
The coefficient f corresponding to F={ F11...Fd°}is given by:

g Bk

(1.47) B= r! | 1-3 (—1) J where B, corresponds to F..
=1 “J' rd vj J

Proos:

1.) (1.46a) follows direcotly from (1.27), since

_ e (1) @.20n) (. . 5 < (1)
u=1 and hence k=1 and Ry 7“2 [f]o. go f {éToi .

2,) Let
' m M m m
N 11 Mo }
F= { F1 oooFd% ’ Fi= (F'i1 ...Fidij} ’ Fik- {ooo) and so on, until f

is reached,
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Out of all Fik’ Fikl’ veeyf we now collect these elementary diffe-
rentials, which differ from F.,,...,Fd and denote them by F6+1""’Fn'
Then each of the elementary diaferen:ials of which F is composed

can be written in the form {F,7...F 7} where w2 o.

Example:
P- ({£} (£ £A))
F= (£}, Fpn (£ (£2)) , Fy=( £7) , Fym T 4
then for example:
Fa { 1F2F3F4} » Fom {F1F2F3F4} .
5.) Let M(F;F) be the folloving set of tupels:
(1.48) M(ME) = { (myqpeenred) | T (ny iFpeessP )= F) o
Choosing one tupel out of M(ﬁ;F) and putting
{1.492) Wy= Wy qteeetiy o ,(i=1,400yn) and p= Kyteoothy o

ve obtain from Lemma 2

(1.490) n P
F11000F1t’r d ,E}"'( —17—). F + ...
ay? A\t Marte e

4.) From (1.10) we have

q . A’
k ?" A d a
(1.50) F,...F, 39— p¥y - M, eep, L F)
1 A dyA e ( 1 A gyt
) Wes A wowparinon of kerms in (1.37) is possible:

In the left side of (1.37) we choose an arbitrary elementary &if-
m n
ferential F-{F, ...F "} of order r.

In the right hand side of (1.37) we now are interested manly in
those terms, which contains F:

for this, we insert (1.50) intc (1.37) and let the summation run
only on the tupels of M(ﬁ;F) § 80 we obtain by bearing in mind the

number of permutations ~f ths sum o and by (1.49a,b)
r1+o X +ru=r-T(
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OTDHpC Loull> A ’-,(Ji ) (L

! .
c et (7o

S Jef®) (‘5’ fﬂ. GO 1\ gy (15490)
D Hp ) m N g N R i A
o{K) T B (e
"% BT T L S Gl )["’J

i:t;;g (k), &2 _ 'lkl_ I ("1 (o)) 8
A" %—k u(FF) 1 ( i )
we obtain

) S ‘
Bg (] - r!gf {;ei )Af ).[Fjo ;
using (1.28,29) it follows thai

(1.52) A(k) w(k)

This, however, does not jet lead to formulas for Wi y 8ince usually
the set M(ﬁ;F) and therefor Z\i are not known. We thus try to find
a reocursive determination:

6.) We assume that the elementary weights ¢1,...,¢ which correspond
n he
to F1,...,F of F= {F11.. F } are knownj then also the followinr

sets are known:

(1.53) M(l)(? iFy )- { ’u(l) (1)) | By (x (1),5. peeeyF )= 7,

(1= ,ooo,t ’ 15,‘)1$G)

l

and hence also

) - 28 (K)

(1.54) IWLJ Ty T At

Using (1.53) it is now possible to construct the set M(F;F):
because of (1.40b) we have

- T r(t?)n* (1) (t)
Ffnpda (F 0 oooFr L B e PG/ N
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A By g
Since we want F Knik)-{ Fy ...Fd }s F , it follows that:

F (u(1)\ J g c00 (uj(.t))” th where 1 ‘J1gooopdt‘d .

Since the tupel: (...,ug;),...) are known from (1.53), the still

unknovin numbers u}1 are now obtained from the comparison
(o

% p Y
. 11 n1 1 g
(1.55) (F," " . Fy Fj1...FJt} = {Fy «eeF )
as follovs:

Let ¢ »o (i=14244..,40) be the frequency of i occuring in
(31,...,Jt) , then (1.55) gives:
(1.56)  w{%a uyq, .
"enoce it  follows that only those (31,...,Jt) can occur in
(1.55) for which u(°)>,o (1=1y000,7)

Thus the set M(ﬁ;F) can now be written

M(F;F)= U {(u11 ,...,u;;),...u(]l)...,...,... uj(_;)...)l

J19°"’Jt—1

9.
1.5 5_1)’“ "Oi 20 (i=1 yowyT)y ("'"ik '“)‘Ma)(ﬁlfl‘
(1.1,ooo’t)
{«) From (7.13) and (1.12) it follows that
9
d k
PeesF =D ¥
1 8 dys
S ()t 15— LS
- By .A Tooo ! 10--“ .
t=T A+ Ak 1 % ord 1-A1 ord i‘t-xt
Ai)'1 g
(1.58) a_ a
. F‘l‘..FS dys (?1...Ft)

Ve insert (1.58) into (1.37) and let the summation run only over
the tupels of li(F;F) jdoing this we use sgain (1.49) and bear in
mind, as in 5.) the number of permutations. Similar computations

as in ©,) now lead to
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B¢[F]
-1 ' '
iZ{ (k)%’? é.;.ﬂrk 1&;1’L .7‘1!’f:At’ :/:111-7\1'“Z;?t-xta’mtt'
a| ’-m(;‘ﬂ?i)“g?)) S .T
i;,;;;:tﬂ L ‘J'A’ u{) (@, iFy,) M(t)(ﬁt:F )
: ﬁ@: ﬁ: 7;?(%‘%?2) Jl))'m

(by rearranging)

RO (k=1)! r!
kL'T i;' {_T }1+. e A k=i bt ATy ! 37_’mt_7 .

1>/ “i"Qi)o

) I/ g ) k
(31-"T')( .vg’{) a1> 1=1<;¥d A )Jj }'{"G)(yj )
S A

M(
.(F] (by ueing (1.54,56) )
)

(A )
ANF (ot (1051) )
T

T i - (08 < (k=1)1 1
"\ Tr' D Tl v pows il
k.1 131 t=1 A +oco+). -k-1 1 t

1 t
Al)1

(o)‘“']_ Q (7‘1) ,(At) .
%—:__,3:7\“ (ks 1;91)le i )%1,1 vty ),

here we have used the following symbol (of., Gribner - Hofreiter: Intec-
graltafel )

45

(1.59a) (aj;=1;A)= a(a=1)w(2=2+1) (A=1,2,..s )
(1.590)  (aj=130)= 1

The comparison of the coefficients in the above formulas gives

1 (En%)“j
10 ! bl
(1.47) p=r 3U1 i
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m m . o
R OARIS RS il 2 L) sl tlrtnr -

k=1 i=1 tn1 A1+000+At.k-1

A1)1
£ (Fnn b))

31,.,.’Jt.1\1. J191°0. Jt’

Those are the wanted recusion férmulae for B and ¢.

9,) Formula (1.59) can be simplificd with the help of the following
transscription:

gn E¢ 2 4.5

(1.60a) o ‘/ ‘\ ~'\‘ ~~
7’ \

' \ \

p- (3 ...,_1:3u K3 ,... ".. ) -(8,...8)

with
=1

(1.60b) g= gui ’ ﬂi- ;uk (132,000,5) ’ l1 Y o

Yow formula (1.59) becomes

) A ‘ r A& <1 A(“1) A(u )
(1e46) (By-08,) = 2 ;cgkb:”m .k-1u1—!flf-.-;5-w1’i S

1
1
Proof:

a) to prove this v: need the follwing two summetion rules:
First Rule:

Assume that out of (A,,...,At) T numbers, 88y Aqyeeeyh  8Te
distinct nnd that A; (i=1,...,7) occur §,~times in (Ajyeeeshry)y
if further in (ij""’it) 21l i, are distinct, it holde that

- (A) (A 1 ~ (a) ()

(1 .62) ‘-_______._.A Y\ L it A ...Ai ]
(A1""’}‘) it J i (11’ooo'1t) 11 t

erc the syrbol 2. denotee summation over all permutations

Of (uc) .
Second Rule:
g - <
(1.62) 7- (ooo) a £ 4 ("')

J1yooo'Jt'1 1‘J1‘...‘Jt‘d (J1pooogdt)
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b) In (1.59) we now fix k and t and choose a tupel (A1,...,At), which
satisfied the same condition of a) . Then it follows from (1.59) bea=

ring in mind the permutations of the sum 57—' :
A.' +0 o0 +At-k-1
/ ‘ Hy=t.
(k) ___ (k-1)1 1 T AQMNCE
(1.63) >n-°1 AiTesshy T * TiToesb T H(“1"1‘°1)Q"1,1 ‘
is1 1 H 1 T J1gooogjt-1 =1
(A)  (a,)

[ ] ‘i’ .Otw [ ]
-’101 'jt,i

0) 2o show the equivalence of (1.46) and (1.59) it suffices to fix
k and t and to sum up in (1.46) over the following tupels

(”1,000”'8)- (O, ou,ui1,ou,0, oo ,uik, 0 90y ...,uit, e 90y ou)

(1.64) > $i, <.,, <4, ¢
with uik- Ak,-1 and 1 11 soe it a o

The resulting expression has to equalize (1.63) :
with (1.64) it follows from (1.46) :

.. A(0)  A(Ag) (o)
f—-°§k)7 2 T"?EXL!! ¥ 1"'$1 11'”@1 i
i=1 164,<4, Cutd <8 (A1,...,At) 17" % ’ 1 ’
141 8,1
(o) A(A)
é’ cgk)j.—. Z—-—-—- rg’k-l): [ 6 T 16 ! Q1 il..“A,i 1i".
is1 164,¢00 . 88 (11’""it) 1777 1" 2 1
( 1{‘-3 j'1,...,t) ".wl,i.”wit,i..vs,i

Next we turn over to the notation with Wiﬁ by putting

ik coew) Jk ] k",ooo’t

QI(CO) I “,(c:)

,i 1,1 where ﬂl‘ k:nl+1 (1-19000’6) ( of. (1o6°a,b)) .

In (11"'°’it) all numbers arc distinct, but not in (31"°"Jt)’
since 1 {31,...,:jt£ o . Again denoto by ¢ (l=1,404y0) the fre=-
quency, with which 1 appears in (31,...,jt).

From (1.60a) we sec:
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if Ql>0, then exists a % so that

ﬂ1\< 1“(...(1"4’01(1‘ (1.1’000,6) and

u‘ou "JM'QI. b

1+1

J

Thus, by the substitution 4, =-=> j 1in (1.65)

7 (oco) changes into Y .u1) coe (“G)(oo-
161, ¢ci €8 183y $000 €3,80 Q4 Qg

and

.2—-—.——-——’—(000) Ohangeﬂ into L—.—Q.'!oooqd!(ooo) °
(119"”11;) , (J19°°"Jt

lp 3 - i
Finally with \Qi) ;! = (wys=130;) (1.65) becomes

<= (k)_(k=1)! 1 S .
"—~°1(L )A '(%-5 Toere Bl | 4og 2 (uy=T40).-.
i=1 1 $ 8 T 180, Ceee €3, 60 (Jqreeerdy)

togrieg (e ()

But this, using (1.62), is equal to (1.63).

Thus, the proof of the thcorem is ocompleted. Done.

Remarks

1) From (1.46) it can be secn, that the correspondence between
[j¢1...¢5] and (F1...F5} is one to onec.
2) For m=1, hencc k=1 and y=eeeei =0 the formulas of Butcher (ef (1.4

arc occntained as special cases in (1.46),

Definition: A method for the integration of crdinary differential

oquations is said_ to have order p ( or error-order p+1),

if for its approximete solution ¥(x) holds that

(1.66) y(x)-§(x)= o(nP*")

for cach solution y(x) of an arbitrary differential

£quation.
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Theorem: A Runge-Kutta-proces: hus oxdor p if and only if the coeffi-
cients satisfy tho conditions

(1.67) @ %- 3 for ali olemtadary differontialp of order r&p .

The constants y satisfy ihc reoursion fornulgs

Hq B 1
(1.68) ‘y- r‘Y1 o.oyo,d )

“ L
where y corresponds to f= f¢11...¢661 and v, %o ¢i .

Proof: The assertion follows fronm

y(x)= %.; -E; bl a&jc (cf. (1.3) and (1.10) ) and

'i(x)- %— 2 pd(F]_  (of. (1.22) ana (1.27)).

k-o ord F=k

Thus the Taylor serics coincide up to order p iff (1.67) is
satisfied.
Formula (1.68) follows from (1.11) and (1.47) :

= B\ Hy
)4
" £=r}a|1 (ad) ) r71 e .YO' '

Done.,

Examples of Conditions

In many cases formula (1.46) for the elemtary weight can be simplificd,
For this we give somo example, which shall be needed in the next

scotions:

We put
(1.70) a,= En_'_b“) ;
17 €201 ;

this is motivated from transsribing (1.15) to non autonomous systems

using:

") The coefficicnts y are also tabulated in Butcher / 1/,p.191-193,
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(1.15') (") (D y)(x +a.h,y +h€-bj(.;)g§1)+ ..ﬁ-f’_b(“) (“))
with =1
(1.4") D"g'i*?fd -g;d .

kxcmples:

(1.71)  § = 2‘: (1), 4

&
n _n
(1.72) [ﬂk3 = EE% ;;loiu)(rg-1 n=1) ak'u+1 = E%T

-

EORNTNS Ry o) 3 o) BRI R il o

w=1 in1

an (AW - 3 3o %k-uﬂ(;{-_ 21 502) Org-tpnst) |

He o!

-
[N
-

x=2
. f_bg)aé'm* ) ( '1)(k;-1 30) (131 ;u-6-2)al+9 -
J=1 C=0

1

® Tkeiv2)(1+1)

m n=1 ]
(1.75&) [‘¢1"'¢sﬂkJ = g; i%cj(.u)dsz()(‘;)(k ;d)ak d’gu d) zr+k,;1oﬁ7..d,
with

(1.75b) ¢= E¢1ooo¢8.j = _._an izlj:c u)\l’gn) and Y= r71...7' °

Proof:
1.) (1.71) is alrcady proofcd ’ ef. (1.46a) ).
‘nc quantitiee y, which correspond to f are:

(1.76) §1)=1 H ék)n o(kn2,3,...) Py i - ibi )- a8y .

€

2.) Beeause of (1.76) for [}k] putnation in (1.46) runs only over the
following tupcls und their permnutations:
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(4] - 3 of“) 2 (ne 1)u“"’M =

N= =1 (1,.00'110'000’0)

7 n
E .1°£N) Qt) (u-1)la§'ﬂ+1 - % Eoi(.n)(k"d ’“'1)&1;-’“.1 .

3.) Because of (1,76) for'[¢1fk] the summation in (1,46) is only over
the tupels

(11’000’1’)- (6'1.300'1’0’000’0) with s=k+1 and o0 € 0 § x=1

and their permutations:

henoe
k1. o & (& (x=1)! (a) k-(u-a-1) (g =9 ne0=1)
LN Pl sl

kn') (k;=1sx=0e1)
. 3 }_‘_- (a)l—-(cj (kp=t ety {ea=t)

=1 i=1 0=0

-
.
-~

In (1.73) we put §,= (4] . Thus with (1.72):
Y(”)- (II.;-1;n-1)a]"“"'1 (%=1425000 )
(0) ﬁ:b(ﬂ) (1 j=130=1 )8.1 «g+1

, '6'

inaerting this into

Z ic(“)\(kl -1jn- 1)&?"""1?1(?2-'- gc;j(k;-1;a)a \ls";‘m ))

=1 im1

ve got (1.74) «

5.) From (1.46) we have

(n-d) -~ (u-o-ﬂ! (A) ("s)
(1.77) ¥, ;.211’.'2.“4"{:?4-‘1 Ren T Y, . IO

Al,o
Rcaanse of (1,76) in the case of [¢1...¢s¢k]the summation in (1.46)
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is to extend over the following tupcls

(A1’...’A8'...’h8+k) = (A1,ooo,AB"1,ooo,1’0’ooo,0)

with " g K=o
A’i) o (1-1""’5) ’ ﬁki +0s %=1 gy O= 0,.00,“'1 o
Then
K BB (g
[¢1"‘¢9¢ ] = Z ‘__01(. ) (K_)!

1

¥

=1 A1+000+A "d’u—j (1 ) A !...A !
XX XXxX)
)o y 020 G k=3

) G )ak-°
* T1,4 e,

(u)“'1 (k) (x=1)1 W(A1) ?(A ) k=0,
1 U\) K"" +A. rrymy c A.‘!oooks! 1 i e B,i i
= - qteee =R

Al>,o
o & %] neg=1)!
R M TTRIT s w3
ﬁ? " -0 K1+...+F-‘n-dﬁl 1 8
Myo °

4 0 ()

.W1 1 ...Ws i

}?’ i;o§_u) . ("')(k; 1;t!)ak d‘l’(“'d) .
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V.2, Implicit Runge-Kutta-Processes with mpultiple Nodes
Introduction

Py}

Aa with classical Runge-Kutta methods, also here the following distinc-

tlons are useful:

prlioit method: bj(.];)ﬂo for d'i,i+1,coo,n H k’1,2,oto,m

semiexplicit method: b§§)=o for j=i+l,e0.9n § ks1,2,400ym
inplieit method: otherwise .
In the first case the valucs gik) can be evaluated recursively.

Jtherwise they are determined by implicite equations which may
cec solved by iterations.

The following theorem about implieite Runge-Kutta-proocesses is due to
_utcher /2 / :

Thocrem: Each quadrature formule (with single nodes)

n
= v"
(2.1) y(x) = y0+hf§Tcif(xo+aih)

can be extonded to a implicite Runge-Kutta-process with thc

same order:

B, &

e
y(x)= yo+ni_/=_1<:igi with g,= f(xo+aih,yo+hf:1_bidgj) .
wherc Ay 4 o, are the values of (2,1) and biJ are detormined
by the eguatiops
2 k-1 2
Y.bijﬂd ='-’-k-' k=1’|oo,n H i=1,ooo,n .

=1

dere we arce showing that an analogous theorem is also valid for quadra-

sure formulas with multiple nodes,
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guadrature Formulas with multiple Nodes

—-——— .

The following generalization of (2.1)

(2.2) F(x)= ¥y +hi )f(x +a h)+h ;: (z)f'(x +a h)+...
1

is canlled a guadrature formulas with mul%iple nodecs. Here not only

the values of f(xo+aih), but alsc derivatives of it are evaluated.

Such formulas ( or special cases ) have been investigated by a2 number
~f authors, e.g. D.D.3tancu,h.H.Stroud (/48/,50/) ,S.Filippi /15/ cess
Here we restrict ourselfes to the formulas with multiple Gaussian
nodes given in Stroud - Stanou /50/. Those reach, similiar to classical
Gaussian formulas, the highest possible order,

The following theorem is proved in fio/:

Theorem: If m ig odd, the coeffioicnts a, can be determined so that
formula (2.2) reaches order (m+?)n , whcre the coefficionts

°§k) (k=1,44.ym) are given by:

m n
& & (k) 1.1 |
(2.3) __ 3 c( (1-1; k-1)ﬁ = - 1=1,...,(m+1)n °

£;1 (=7 i 1

ihesc coefficients are tabulated to 2¢ D in 50/ for m=3,5 and
r-2(1)7 ( for the interval [-1,+1] ) .

Implicxte Runge-Kutta-Process with multiplc Nodes

e ST o et o e T el T e e o o e We

The idea of the following proof is duc to Butcher / 2/. the verification

nf the single steps, however, here is very muchmor. complicated,

Yle firast prove the following formula:
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(2-4) (1‘ +ooo+1‘ ;-1“1): \;______ ——-!—:-.L!-u——l (r1'-1'u1)...(ra’-1 ;ns)
”1'.'000'“‘8-“ 1 ¢

30
*y ¥

vwhere
(204a0) (r3=13u)= r(r=1)eco(r=p+1) (p=1,2,...) § (r3=1340)= 1

2roof (by induction on p)

tho case u=0 is corract,
Induction from u to u+1:

(r.,+...+ra;-1;u+1) - (r1+...+rs;-1;u).(r1+...+rs-u) -

>.- 7—!-':{7“—,- (:l.'1 =1 ;u1)...(rs;-1 ;ne). [(1'1-'u1 )+...+(rs-ns)} =
44-1'.'.00'.‘“8'“ 1 8

Y
2 ;—"—;—. g(rp-hu, cos(ri=tin ) (Ty-n) =

“1"'9.04'“ Ll

. r(rgs=ting)eec(rs=ting+1)oa(rgi=ting) =
+ooo+n -ll 1 Hiais &

g p!(ng+1) ; (r1;_1;n1)...(ri;-1;uid-‘;'...
g

+ooo+('n +1y+...+'n gu+1 1!"°(ui+1)!ooous

(ng+1 = i )
cee(rgi=tsn,)

! %

r(rgisting)eea(rs=ing) =

gtee et -u+1 1!"'”5
%y 2 0
== 1 . I8
> —_— ) (P 3=13%,)eee(T ;=131 ) =
Holoooh ! if 1 1 8 8
u1+...+u8-p+1 1 § M=1 7
%Yo

T '_'(Lﬁ)!_ (r1;"1 3”1)000(r85'13ns) ) Done.,

u1+...+u -p+1“1!"'“s'
3
nl) 0

Consaoquenee:

3-1-

(2.5a) (k+lelj=1j@)= (k-1;-138) + 1. {n+0 (1=13=13%)(k=1;=138=%=1)
uo\
-1

(2.5b) = (1-13-138) + kgr"uiﬂ (k=13=13%) (1=15=1558-%=1)

U=0



(2.52) follows from (2.4) for r,=

with k and 1 interchanged.

k-1 ] !‘

v.2.

2

For the rest of this scotion we assume the following conditions:

\

8y £ e, fori £k and ay ¢ o (i=1,4e0yn)

(2.6)

ci(.k)¥0 131’000,11 ’ k-"1,o.o’m .

Using (1.72) , (1.75) we now definc the following symbols:

Defintion:

A( §)<h-) 78 = 1 for all elementary weight of order r

k-

€ AT k-1 ) N\ ] - o
B(3) ey °77) = Zf.c§”)<k-1;-1;u-1>a§”-% kelpoees §
= .
{ 1) . (%) o
v-— Kel3=13s= ) ey i 1=1,.6e9n
C(¢)&med 0 J T R X ’ ’
( ) n=1 n' '?1 lJ k k31,...,§ )

D(§) 4= "'Z—_ §n'c§” (k=1;=1; u-1)ak "b(") -

u=1 i=1
[ (6),_ K m
orfey (-2 5o
\ k ¥=0+1

‘H;-'1. i
n W2
< . (0) l=c. 15
o b a +2
.
J=1 13 id

Theorem:

(2.7)  3(§+m), c(q)

(u) ( )(k 1;_1“‘_6_1)&1;4»0-11)

G=1,ooo,m
J=1,...,n
k=1’eoo,€

HON k-u/\—- (1-13=130=1) (ka1j=13u=1"

=1, pss ; (2.5b) is (2-5a).

°1 %4 \&- o!

) (k-1;-1;u-d-2)(1-1;-1;a)) r ET%:TT

N k=1,ooo,§

=) E(§v‘?) .



Proof:
n n n
< < (u) k-n e (1- 11-1io-)(h-1 “13u=1) < (c) 1-c
_ Lc L- A L 5 Ty N b
w1t =1 S
N2 (( ))
+ a}dz; C-) (k=% 3=13x=0-2)(1=1;5=1;0) » kK

w=1 i=1 O=0

n n i H=?
Z Z_c§n)al;'n+1 . %Qk-1;-1;n-1)+1 C+1/ (k=1 3=13%=0-2) (1=1 =13 69 (L._a

1 f L. (x) k+lex B(E+M) 1 _1

- 0}/ (k+l=1j=1;u=1)a = = oo .
T & &0 i T * Tek
Theorem:

(2.8) B(g-o- men) , E(§, Men) == D(§) ,

Prcof:
! 1 (1. 2 \B(E+)
i - & {F- i) E
m n
L S LR SN A . (2.5b)
k:{:’?hoa 8y &1 j=1;n=1)= (k+11,1,n1)a)
I & () 1-n 1'0'15 g A== .
é"i' E_'{oa a) ((1-1;-1;14-1) - oy GZ-(M) (k=13=130) (1=1;=13%=-C=2]
(g _-r)x x=os2) 1 ck New?d |
pN chu) 3 “*l(-15-14x-1) —"j - 3;2‘(‘;1) (ketgetju=0-2) (1=1;=1,"
H=1 381 3 0=0
- ® W
with f‘d') " C’H) - (dﬂf) )
\ i Tan He? \

n n ] d
L }:cg" aﬁ'”\(l “15=15x-1) -—1 ‘;}_"_ (;:}) (k=13=1;4=0=2) (1=13=1;0) -
=0 /
m,

#=1 j=1
n (u) k+1-n u"'
- Tci ¢ \o ) (k=1;=13%=0-2)(1- 15=-130) =
H= =1 J 8

‘in the last expression we now subatitutc 0 =«9 =1 and % -=¢ :\
(the summation bounds o {0 §u=2 § u=2 thus transform into ]

\
\0 € %=1 §0=2 {m=2 , hence 1&nén=1, u+1€a€n. /
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k
= Em: icg") :""’ ((1-1 =t puet) 1—1:-'1 k3 2 (; ‘) (k=11 jn=0=2)(l=1 =1 ;c))

m. m+l
LS o(0) k+l=0(0 ) ke1geljgenet)(latjelju=1) =
= ng 3 ( (

( by rearranging )

Z Z(l-1;-1;u-1)a ((“) —-'1

= 1 ja1 O= %+

gd) (:)(kd j=130=n=1 )a';'""a)t

LA n=2 \
E‘:T chn)“l.;ﬂ-u:z—.; C:}) (ket3=1;u=0-2)(1=13=130) 3}

on the other side we have from E(‘S', rl) after slight modifications:

b i f-.(l 13"'"‘-1)31 x4 (g ?:{ d)(k-ﬂ-‘lw-‘l)a:'ob

H=q J=1

1 E(
1(1+

~
e~
Cue X
~
."\-—/

(2.10) n N2
- Z_ (") ‘"1'“'“ ?(k-1;-1;n-d-2)(1-1$-130)
H=1

b
=9 O=0

Subtracting (2.10) and (2.9) \-.e obtain

2_7 ‘?:(1-1--1;31-1)111'” {u' L1 fi (5)(1(_1._1 6-1)ak -0y (u) -

k

()18 & (0)(o . k+x=0
-(QJ“ —k-li - Eﬁcdd (u)(k-1;-1,6-u-1)ad*u )}-o o

Now we oconaider tlie expressions in the waved brackets {...} as indepenie.
variables and let 1 run from 1 to m.n , then this is & homcgeneous linenr
system of equations with none zero determinant ( of. footnote on p.1c3
and (2.6) ). Hence the system has only the zero-solution {...} = 0
(k=1yeeoym § J=1y0009n § kmlyeas, ?) , this means that D(g) is satisfic:.
Done,

n o )
Defintion: Given f. = E v c(“)\l' (%) and §.= S T ( ) (”) 3
t u 1 1L=T 1 i 2 K= 4 {-1 °1

then we write

)]
(2.11) ¢1 = ¢2 (m) ‘l’s:‘i 3 ‘i’é’:z (i=1,ooo’n ; u-1,000,m ) .
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(1.48) shows that g,= 81 (i=1,...,8) yields [¢1...¢s]5{31...35).

Lemma 1: If c('q) holds and § = [¢1...¢ ] is_such_that ¢ have orders

r &M (1=1y..4y8), ihen .
(2.12) yf = [677].

2rcof:(ty induetion on » )¢

for r=2 (2.12) is satisfied , since fl= [#] is the only elementary
raight of that order.
Fizst C('rl) gives since r <7 (i=14000,8)8

(2.13) @ = [U Jo--U J D = ...r [ﬁr' ] with &#1+.-..+rs+1 ;

bYecnuse: r, .
tiie coefficients l‘i'j(_k.)j belonging to [ J read as followr
y
N ry-k (ri;-1 1k) r, -k
(2014) wgl:; - (ri-1;-1 ;k-1)a3 = ri B.J (k-°,1’o-o'm) .

For k=1,¢s.,m this follows immedietely from (1.72) and for keo fronm

4
flo) L S 1 Sy (np(x) (x) 17 o(n) ot
‘Pi,d = uéT - ETka Qi,k ; vl Zb (ri;-1;n-1)a ’1 ;i'i
Thus
3(1.46) < J‘—o(n))-: (n=1)1 g,(°1) '\;(cs) (2.14)

s O s A Ao CABEEEC. 193 °°* 78y z
0,20
i
- ic(u)s— (n=1)1 .(21"1’61)“.(1‘3"1;63) .
{-:-'T 31 J d1+...+ds=u-1 61!“”69! Ty Ts
p)
dito 'Lr1+...+rs-(u-1) (2.13)
“;j =
AR s CE TR
c Y3130, )eee\T j=13C ,
11?-’1 :j%f ) TyeesTy 51";-(30"‘08‘”'1 0‘18...6 ! 1 1 8 M

{ using (2.4))
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B R W € ) T (1g72) 1 r-1
TyeeeT, E;% 3‘103 (r-1;-1m-1)aJ = r1...r’[z ] .

Induction from r-1 %o r
“nduction hyp ¢ thesis:
r, -1 '
(2.15) yiﬁisri[;é ] where r €0 (i=1,.04,8) j
thus we have

‘ r,~1 r -1 .
CEEORRAURE AR LR SN A B A I R S

Done.,

Corollary: ;g_C(Tl) is satisfied, then (2.12) is valid for all elemen:

tary wvielghts of order r571+1.

Since for these the conditions »f Lemma are satisfied.

Lemma 2: If C(7) is valid and f = [#,...f,] is such that for the
sorresponding orders it holds thet r 2q+1 , ri$7 (A=, 00093),
then

(2.16) v g =xy, (4,4

r-r1-1

1.

roqis

..
- ———— -

‘e

Pirst we have by Lemma 1 and C(q)

CRCONN T ¥ RO VAL | Epe S

..rs

+...+rs

]

vhere r,>M , r4y (i=2,000y8) ;

since
r2-1 rs-11 (1.46) m _;L (u)'_ ' (u_12! (61) (Cﬁ

[9:087 1[4 3] V€7 3 0 e S5y Lo, T N5

61;0 8

( using (2.14) )

< éLc(u)=r° n=1)! w(d1) (r2"1;62)"’(rs"1;ds)
s Ll Z . .
¥-1 J=1 % di+.cet0 s LERUETLAS 1y Taee oty
s 8
o‘i,n

§2+...+rs-(u-d1-1) z



3 Z. & (x=1)1 (n-0y-1)!
by b o Z Zo§u>1z g !(:-61-1)! 672-+...+° -u-61——1 2'00.6 ! ¢

gi¥o

T teeotl -(u-d -1)
(r2;-1362)...(r §=130, )a "2 Ve

( using (2.4) )
r .j.r Z i°gu)z—_ 1)(1‘ teoodr ,-1;u-61-1)a

r +"’+re'("'°1'1) (¢ v

1,3

2

:E; f—‘ (u)zz: )(r +...+r ;-1’G)ar2+...+r dw(u-d-1) (1 73)

...rB =] j- =0 1
2...1‘ [¢1 ] *
Thus
W= Ty, 000ty [¢1... 9] (2, 12) TV TyeeeT, [¢ [}f i J...V o .D(zé
e, B2 T0)
Theorem:

B(§), ¢(v) , D(E)
(2.18) )¢§§+~7+1 [ S €2 125+2 J"‘"‘(S) i

d.e., the Runge-Kutta-process has the orderS .

Proof:

1.) If @= [¢1...¢s] with . ¢ (i=1,...,8) and rsg we have by Lemma 1
¢
and B( )
'@ (2_.£12) r[ﬁrd] B(§) ,
In particular this is the case if r£7?+1 ( Corollary to Lemma 1 ).

2.) Thus it sufficients to consider the elementary weights

g = [¢1...¢s] for which at least one ¢i y 88y ¢1 , has order
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r1>1Io
From the oonditiong £ 212+2 it now follows that the others elementary
weights ¢i have orders r,§{7) (i=2,40048), otherwise, if for example

r2>1z ,then we have
§2r-r1+r2+...+rs+1 2 ('q-'1)+(1( +1)+1a 2943 >€
hence a contradiction,

Thus the remaining elementary weights ¢ gatisfies the conditions of
Lemma 2, and it is suffifent to show that

r-r1-1 1
(2.19) (8,4 "= !
since then we have
X - T ik

Proof of (2.19):
This proof is by double induction over r and T for r-1?+2,...,§ and

r1='0'(+1,...,r-1.
First we have from the conditions (2.18) and because

(2.20)  rery$§eqH1-(4) =f

and hence
., F=T -1 n T=r,=H
[¢1g§ ) (1:73) Z_ ;ogn)((r-r =1j=13 n-‘l)a L \l‘$?2 +
W2 | r-r,=A=1 (U=o=1) (1,36)
+ "')(r-r T T LY "
m n - rer,-x m n
T S ofw ((r-r “1;=13u=1)a S s p(oy(e)
L 5% 1= 1 L of £k 14k
n=2 r-r,=0-1
+;g% CBD(r-r -1;-1;6)& (";6'1))

(interchange of sequence of summaztion in the first expression,
substitution 0 == yeg-1 , i--k in the second )

L m o n i
N S T

o=1 =1 =1 i=1

n n 3_{_-_{1' ’ r..r -4+d

Z N cku)\ (u;‘)(r_r1_1._1‘u_d_1)a (n) 3(2 20) and D( )
U= = i O=1
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- o(a)(1_ar'r1) Top,-H+0
Z : k — k - (71) {n |(r-r -1 . | ;n-6-1 )a 1 Y 56}
0=1 k=1 1 H=0+ \o. "

o n u-1 Y=ol =U+0 \ 3 :
& (u 1 (u) % -\ (u="
+ o r-r 3=l igeg=1)c - it ‘

& S e e TN (o (RG2S
1 i < (06)y(0) |
——ie R AR

1 o= ﬁ:‘- . 1k

T ROV Mt
T~ ﬁjok ak \1/1 (e )4...( )(r'r1'1"1’"-6'1)ak \1}1,.;..—

-t -, - W=
i"(-u)i( eur, ;_1;6);‘ ™1 "Wf k") (1575)

o=0 Y

with  f,= [81...8£] .

Since r,< r we have the induction hypothesis1) ¢1- -;- and since the
1

highest order of ¢1""’¢t is smaller than T,y We may also assume the

induction hypothesis for T, this yields
r

7, 1. e
5 ooo 7 1... t = r')’.' .
This gives

r-r1-1

(.4

J R --—1—\ el hence (2.19). Done,
T=Ty\71 ’71) ry, n

Theorem: it holds that

(2.22)  B(m.n+n) , C(men) === A(m.n+n) .

Proof:

S=n » M= men f.— men+n

B(men+n) , C(m.n) .(2_1).>E(n,m.n)

- - o

1)'.'1‘he induction start with r='rl+2, r1=’q+1 vhere (2.19) is correct
since then the elementary weights in (2.212) satisfy Lemma 1,
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B(n+m.n) , E(n,m.n) _2_§_:_).L> D(n) ;
sinoe§$ E+“q+1 and {s 27 +2 are valid we have
B(n+m.n), C(men) , D( n) (—18-2)A(n+m n) .« Done,

Wo are now ready to formulate our main thesdrem:

Theorem: The quadrature formula with multiple Gaussian nodes (2.2)

can bo_extended %o an implicit Runge-Kutta-process with
multiple nodes,This has the same order than the guadrature

formula,
Yhe _ocoefficionts b(g) are uniquely determined by the nodes

a; and_the woights o(k)
Proof:

B(men+n) is satisfied because of (2.3).

By k k.1’ooo’mon
i

C(n’t.n)C—-_-e-.)i1 (k-U-uu-U tb}.;) l;'" - -;-c- dotgie.e0gt
U=

the coefficients b(.‘l) are uniquely determined since the ocorresponding

determinant 1) does not vanish.
Finally from (2.22) we have that the Runge-Kutta-process
has order (m.n+n). Done.,

We still remark that all other theorems of Butcher can be generalizec.

We state them without proof since we do not need them:
Theorem: B(n+'v?) . E(n,Tz) =>°('1) 3
Theorom: B(§+7) , D(§)==)E(§,?) .

1)this is a so=called "confluent" Vandermonde determinant which
is regular if and only if the nodes a, are all different
( ef. Gautschi /17/). But this is assured by (2.6).

e S S s
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The iterative Computation of_ﬁhg_gik)

We now ghow that the valucs g§k) which are determined by the implicit
systum of functions

(2.23) G§k) (D y)(x +n,h,y +h‘L_b(1) (1)+. :E:big)ggm)
=1

(k’1'ooo,m H i=1,...,n )

can be oomputed iteratively:
S 1, k)
Bk = max 2 |bi l} (k‘1,o..,m) &nd
i1
hv] = max {v1,...,vn} with v= (vqyeeeyv ) ( veotor norm).

Theorem: If the functions Dky (k=1y400,m) gatisfy a Lipschitz-conditicr.

(2.24) 1(0)(z') - O%9)(z') | €L lzt=z' ]l (k=1y000ym)

in some domain B, and if the step size h satisfies the
following conditions

(2.252) IhILB1< 1 ghere ILeL,+...4L

k-1
(2.25b) I'}ﬂk!_ Bk£B1 (k=2,uoo'm)

then (2.23) possescs a unique solution.

z(k),

Proof: Assume that therc exist two solutions g§ ) and g
then

la{)-5{) ) (2¢4) o ||h“b")(g“>-“’)+ *l‘-f—f(mNs(m’-éS’“))!l-:

m! i

Ly (’h'Bm;xHag')-ég")II+...%‘fl B maxug(”) (m)") (2.250)

& l _1)
L k|3, ;?;m?xllsg )-Bg -

Sincce this is valid for all i , we have

m .
T) - l) (1
max Hg§})-g§k)||$ Lklth1 1=:;1me:x ,|€§ )-gg )“ and
1 =1 2 E
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m
/__mux ||g(“) §k)ll ¢ LInlB, 2 nmax Hg(.l)-g(l)ll with Lal +eeetl
k=1 4 iy 9 g

This, however, gives a contradiction with (2.25a) ,

Theorem: Under the conditions of the preceding Theorem the following

iteration converges to the solution of (2.23):

(2.262) &%) o (0%)(x RER B9 S p{1g(1) ++—T- En'_bfg‘)ggmr)m)

g
1,0 = 5;—-13 j,N -1 m 5=1
(k= a-o-vm) .
with .
(k) _ (k) k
(2.26b) gi 0 gi,1 e [D y]o .
Proof:
With

(2.27) X = Ljn|B, <1

we obtain analoguously

16 o5y bls, Eee Nl el o
(2.26) ;;_m?x 1) -6l ligx E‘fmax lek) - Il (5-2,3,..)
Thus we have

el -e()_ sy Inls, Lmax 1§ -e{), 122D

(1) - ( ) “ (2228)
L j JoNe2 Q
L i
k 2 1 2,26b
£ D max g{) -elt) 5 I, (BF60)
- I % T-
-L—k- KN L _S_ Dly]o = const K‘I g .

O A I e e O R §»):+z [#Tes =



1a0(

(k) (k)
Z‘lei,ma'gi,man

®
| ¢ oonst S _x¥*+o*!
o=0

Ve2e

Table of coefficients for me3 , ne2,3,4.

The nodes a, and weights ¢
intervall [o0,1].

(k)
i

= oconst 1-K

g

o Done,

are those of /48/ transformed to the

The coefficients arc tabulated in a,
the bystanding sequence, a,
Condition (2.25b) gives for the ; c$1)...o§1)
step size h the following restric- escesscss
tions : 053)...0(3)
n
L) (1)
m=3% n=2 ‘: h<11,9 ! bi1 '"bin
n’} H h<15,3 LR N I IO B S
n=4 h<20,8 ° b(’) b(B)
i1 ***“in

(i=1y0e0eyn)

(i-1,...,n)

This, however, is no limitation

to the practical use of these formulas.

Order 8
0195-'9“'35325045, +00
,814605564174954 [ v00
,500000000000000/+00 ,500000000000000/ +00
,200720420044974 /.01 -,240729420844074/-01
,366264960671727/-02  ,366264960671727/-02
,201954115831005/+00  -,164596300059599/-01
,516159680005959/+00  ,29%1453714163994 /+00
-, 2234665690R0541/-01  ,P631787730%2417/-02

,568346718997190/-01

,116739668400997/-01
,241294101509615/-01

-, 704925410770490/-01

=, 2153512510574/ -02
,10301930%0020%9/-01



,927%4072111183/-01
,503000000000000/ +00
,007219592789981/ +00

,26665P202960%32/ +00
,7791166649281367/ 02
151343509 1157440/-03

,103773%3435130/ 100
15775301452066¢95/ 400
,262713/071459%/ +00

-, 4450190467057/ -02
1 175652507545125/ -01
V104058372334 907 [ -n1

,165925129500371/-02
, 357505086906/ -02
1 2045505260019/.3/ ~02

,571015931972205/ -0l

. 3205707364 %0558/ +00
,670429263519441 /400
:9@433Ri06802779/000

, 17234014 9491 [+00
,30013%2c9361399/ 02

,112467319565%70/ <53

,623726:470%74444 <01
L 10773814295726 [ +00
,*60057946714123/ +00
,163637779539606/ +00

-,1£09726/5045651 =02
, 6872795610269/ -02
,56201261832:977/-02
,6214017067233256/ -02

, 265375004 0154 [«03
7330723578953/ <03
, 6169379979079 [ .03
, 09160749063 849/ =03

Visier
Order 12
,466683594078222/+00  ,26665820296089R/+00
, 0000000000000/ +00 -, 779116664928335/-02
,2765%8562227198/-02  ,513435091157440/-03
-,148682404703024 [-01  ,307476224629081/-02
2334179702911 /400 -,£38114910320614 /02
,iB155173454652/ 100 1628831752575/ +00
1275196401224215/+02  -,109649606514297/-02
-, 3704984874943 [-01  ,238292645597474/-02
y2751964312714215/-02 -, 200482/42652735/-01
-,19923740461101R/-02  ,135105286925153/-03
,3297656%66%1504 /-02 - ,276%97903920422/-03
1953768777971%0/-01  ,142135915104092/-02
Order 16
,337656551190%0% /400, 337656551190507/ +00
,23476(302367920/-02  -,254766802367929/-02
,101669456137282/-02  ,101660/561372%2/-02
-,110825072275662/-01  ,52153832674573R/-02
,1613576'2147863/ 400 - ,108175506159353/ -0t
,¥9474101006/43/4s00  ,176208909042644 /00
,132440667923051 [+00 |, 3287391/8418074/ 00

,702256984227046/ 203
-, 1717719929063 [ -01
,696293555740320/ -02
, 129126830112262/-02

«,774766653055972/-03
,310537099809661 / -02
6717333927541/ .02
,574070174 M0 L[ s

-,£0%067656235976/-03

,126759951004463/ -02
-,222725353379949/-01
-,%36307916313057/ -02

, 35940562:4325." %/ -03
-, 681566071138556/ -03
,209/ 32638014032/ 02
,687:93402129687/ -02

107

,162313448%09491 / +00
-,300430209361899/-02
,112467819565070/-03

-,134433083011505/ -02
1229250209136777/-02
,999708108220474/-01

,231406485094629/-03
-,388637998998192/ -03
,B64020768861724 / -03
-, 14184906466950/ -02

-,168905732804290/ -0-
2187218755247/ -0
-,582825061336301/ -0/
,3094.28820593771/-03
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Ve3e Explicit Process of Orders m+s (8 £5)

In this seotion we shall give somc explicit process with multiple nodces.
General theorems on their existencc, as with implicit methods, are not
known, of coursc, One has rather to content one sclf with a laborious
gearch for special solutions. The question for " optimal " methods

(few nodcs, small error) is still morc difficult,

Thus wc agsume
(3.1 8.) 8.1 = 0

(3.1b) b(g) =0 (J=i,i+1.,,yen ; k=1,000ym ) .

2> further ocontent ourselfes with mcthods which satisfy the following
conditions:

1.) the first node (ag=o ) hos multiplicity m (m22) ;

2,) all further nodes have multiplicity € 2
thus (cf. (1.18) ):

(3-10) 0£k)=3 (i=2,...,n H k=3,4,ooo,m)
(3.1(1) bj(.l;)ﬁo (332,.00,1-1 H k‘},ooo,m)
3.) m and s satisfy the condition

(3.2) m+s $2m+2 &= 8 $m+?

Conditions for the Cocfficicnts

Satisfaction of C(m) :

P(Pl)("")y(k 1; _1 0-_1)2 (U) k=0 (3 18) Zlk-";-ﬂ 30=1 )j:;b§g)ak-q+

iJ e J
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k
a
+—b(k) -ki

k i1 (ii1gcco’n H k=1,oco’m) .

For i=1 and ke1,.,..,m this is satisfiod because of a,=04

by putting
(3.32) %) &k (ket,...,m)
(3.3b) bgl;) iri—*ﬂ-i-)v' bg) ‘; 0 (im34000sn § K=1y000,m)

C(n) is satisfied completely and the cocfficients Bpye0e98

b(c) (i’},ooo,ﬂ 3 332,00091-1 ’ 631 2 ) arc still frec.

Satisfaction of B(m) :

B(n) &= }: (k=1;=1 16-1)§‘c§°)a§'° (3;1&)

z_(k-1,-1 m)?’c(") k=0 (ka1)t o6 .

g=1 1/‘2

by putting

(3.4) ogk) . %1-(2%77!25;(k-1;-1;G-1);§;c£6)a§-°(k-1,..-,m)

B(m) is satisfied and the cocfiicicnts cgk) (i=24e0eyn § k1,2 )

are still froe.

(ketyeeeym) 3

ty B

Using (3.2) the elementary weights con be distingished as follows:

1.) #=0g,...8,] vitn riém (d=1,000yt)

because of C(m) Lemma 1 ( from seotion V.2. ) is applicable
and all these weights can be reduced to [ﬁr'1} (by (2.12) ).

2.) B =[fgeefyl with 2> m, 2w (4=2,000,%)

all these can by Lemma 2 ( cf. (2.16) ) be reduced to
- r-r1-1
L¢1¢ J .

The condition (3.2) guarantees thet all elementary weights of order

< m+s occur in the above cases ( ef, plot, 2.) )

~,
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Ve thus can restriot us to the elementary weights of the forms
Ta1
{777 and ::¢1yfk3 with r{m+s , ,0m , ko .

Because B(m) and the Corollary of Lemma 1 ( in V.2.) by (3.3a,b) and
(3.4) already all conditions for the orders §m are satisfied. We thus
oan restrict us to the rost and determine the still free coefficients

aa"'o’an H oj(.k) ’ b(k) (i-2,...,n H 3‘2,001,1-1 } k'1,2 ) to satisfy

the conditions for the orders m+1,...,n+s .
Vie thus obtain the following conditions for the coefficicnts:
rier m+1:
(877 = m+1 i
srder m+2 ¢
{ﬁmﬂ] - E}}_
(B ey
order m+3 :

(472] - s [[A"1]1 e e

[ ety ()] - wwrrteesy

Generally the additional conditions for order m+s (s¢ m+2 jof. (3.2 ))

are as follows :

c o "‘*“1_] 1_" 1
Loee .;... = (m+k1+1)(m+k1+k2+2)...(m+k1+...+k_r+1:)
with

k1+k2+ooo+k1+‘r.8 where ki; c and 1‘1’000,5 .

.8 oan be seen oeasly (induction ! ) for order m+s there exist 28"

sonditions of this form.
Jp to m+5 these are listed in /25/,p.45 .
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The method of Fehlberg as special oase

n) Fehlberg's method which,is known for its acouracy and its low
expenditive of work, works as follows (cf. /12/,/13/ ):

diff. cquation: y' = f(x,y) y(xo) =¥,
.k m .
approximate solution of order m: ¥(x)= B—-Dky - n*y
= k! 0 =5 k

diff, equation for the approx., solution: A .
$1(x) = £(x) = Ef1khk 'Y,

Wo put: z(x)= y(x)=-¥(x) , vhere y(x) is the exact solution and
obtein for z(x) the following diff. cquation :

(3.92) 2! (x)=y' (x)-F' (x)= £(x,5(x)42(x)) -F(x) =: E(x,2(x))
with z(xo)az'(xo)a...az(m)(xo)-o .
This we now solve by & Runge-Kuttaeprocess
(3.90) 2(x) = h 3 o k,

i-1
(3.9¢) kg = f(x_+ajh,z_+h ;E;pijk‘) (i=24404yn) ,

for which, because of the above made transformation, considerably
higher orders are possibla:
improved solution of order m+s:

n
- A A A
(5:92)  yy(x)= §(x) + 70x) = y(x) + 0 ) ogdey
Remarks:

1« In /13/ Fehlberg gives a method of order m+4 using six nodes and
with an astimation of the lezding error term.

2. In /51/,p.101 Wanner has cxtended all the theory of Butcher to

Fehlberge-processes.

b) Runge-Kutta-processcs with one zm-fold node:

Here we are interesting in process vwith one m-fold node and a ¢
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s~y n=1, single nodes ,
Let this fact be expressed by the following diagramm
n

123 n

The nodes of the method are pictured on the abscissa and the ordinatcs
show their multiplicity.From this diagramm it is now oclesr why in (3.9%,
end (3.9¢) the indices i,j start with 2.

3oth methods are now shown to be ilentical:

ve have from (1.15,16)

(2.108) ¥, (x)* y +h i-"p)*hz"ga)ssz)*"°+hm°$m)8$m)

with

(3.10%) g1(k) = {D“y}o = k!Y,

(3.:100) &{Dn 2(x_+a,hy +h§; (DN @), M @) ()

(12,200 1m)

and it holds the fcllowing theorem:

Fchlberg's process (5.9a-d) g;;we put

(3.104) cj(_1)=oi (i=24¢404n)

{(3.10e) sk) -(k—_—)—&-gciﬂaid) (k=1,000ym)

'/}.10f) bg;)- bij (i=2,...,n ; j=2’oo.,i"1)

11
(5.108) bj(.l:) = a.f -%:2‘ b:E;)al;-" (i=2,...,n H k=1,coo,m) .

Proof: We have to show that y1(x) = yg(x):

inserting (3.10b,¢4e) into (3.10a) we cbtain
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yp(x) = J’o+hY1+...+hmYm-;khk é;o§1)a]:'1Yk+h go?)si” -
Sr\(x)-o-h é°§1 ) (g§1 )-é;k(aih)kYlc >.
F(x)+h 2?;c§1)( (1)-f(x +8 h)) -

(3.11a) 9(x)+h 2&;0§1)Ei

with

(3.11b) k, = g§1)-?(xu+aih) (i=2y400yn)

i

Next we insert (3.10b,f,g) intc (3.10c):

ai”- f(xo+aih,y0+hb(1) (1)4-... (m) (m)+h zbj(_;)eg”) -

i1 €4

£(x *n hyy *ahY +o ot (a,h)"Y ikh g_bﬂ) ‘;‘ Yk-bhgb(;) Vi
£(x +a,h,F(x +a h)+h§: \1)(@;(’) (:rk(a n)k=ly ) (3.111)
(3.110) f(x0+aih,9(xo+nih)+h; »{ Vg, ) (1224¢004n)
From (3.11b,c) we have
(3.12a) Ei - f(xo+ajh,§(xo+aih)+hf{b(‘)kj) -f(x +a;h) (i=2y0004n)
On the other side it follows from (3.9a,c) :
(3.12b) ky = f(x +a h,?(x +a h)+h?;1 13 j)--f(x +a.h) (i=2,..0y0) .

Next compare the coniitions which arc to be satisfied by c§1) and

b£;) (122)0009n 3 J=2,4esyi=1) with those for thc method of

Fchlberg (c.g. in the form given by Wanner /51/,p.103 ). We thercdy
confirm easily that thc eyvations coineide; thus we may put

bj(.;)-bid and °§1)=Ci ( i=2,...,n H 3.29000,1'1) .
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Lence from (3.12e,b) we have ki-fci (1=2y¢044n) and (3.11a),(3.9d) shows
thot y,(x)-yz(x).
The coefficicnts (3.10c,g) are of course determined by (3.3),(3.4) .

Done.,

Somc oxplicit methods of nrders (m+2), ..., (m+5)

Mere we list some cxplicit formalas of 4iff.rent orders. Their deri-
vation from the above conditions is given in full detail
in the thesic /25/, pp 51-61 .

1.) ¥Formula of ordcr m+2 :

=

n=2

diagrenm @ ) ) m32
1 order m+2
e e
12

Crefficients:

I
[a Y o —— .
21700 "2 a2 ¥

’ \
c}1)=1 , PG ’ c2(2,= _T:,.;L...._.
€ ﬂ;(m+1)(m+2)
() _1__ [ (2) x-2) \
c4 . TET)T ki - (e1)e, )“a ) (k=2ye0ym)

1»
béf)n ﬂg (k=1,ol'9“) S

No coefficicen® 2an be choosed freely.

2.) Formula of order m+3:

j

mo9
| n=2

diagren i m2

i 8 order m+3
N
1273
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cocfficionts:

aso,a- =1 3

1 +3’a
c$1)-1 ’ 021)ao§1)=o

o(2), 2 : =@l 1
3(m+1)(m+2)am 3 5(m+1

115

m+2 J

(k) ?1717!' (_- (k- 1)(0(2) 5724 (2))) (ke2y000ym) 4

béﬁ)a a, (k=1y000,m) ;
(1)_, 2)- -6
h32 ’ b32 a2 1m(m+3)
bgf) --—(—k k= )b§§) ‘;'2 (K=1y000ym)

5.) Formula of order m+4 :

]

T R =

diagram: 2

=3
é
f

Coelficients :

a,=0 ] 812==

~0 ,
n+6 ? dB

c§1)‘1 R 051)=c§1)=oé1)=o ;

@) (m6)® (2)
- 12a§(m+1)(m+2)(m+3)2 "5

1

2) m
®4 " Blnel) (ne2) (me3) !
c(k)‘TLfW(':E - (k- 1)(0(2) k-2

1 ke
béf)ﬂ 32 (k=1,...,m)

n=4
ma2

order m+4 .

B(KLA)

4a (m+1)(n+§)

o2 )“15{-2*"’22 )alz'z)) (k=2 .00 m)
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{1 | b(2) 2
P52 03 )al (mh1) (m92) (n43) (ms6)
b(z) 1 (2)_ 1

42 = ° 012)am'1(m*1)(m+2)(m+5)2

b:g.l;)= _ik_‘_l; (2) k 2 (i=3,4, ; k=2,4v0ym )

4s) Formula of order m+5 :

a

n=5
iagram: >
diagram 2 D 0N LE g
1 8o e e order m+5 .

i 0527;§"(m+1)(m+2)(m+3)2

12345

Coefficients:
I I n+2
2,=0 4 8y= EI? ’ a3= E:g- 14 m+5 ’ a5 1 3
1
c$1)=1 ’ 051)=c§ )= 051)=c§1)=0 H
c(2)= 3 ; (2), n’
- oag+2(m+1)(m+2)(m+3)(m+4) 3 m+2(m+1)(m+2)(m+4)

2 2
(2) (n+2) (2) 3m” +15m+10
(o] = =
A 6a?+2(m+1)(m+5)(m+4) ' 5 15 n+1 m+2$2m+35im+4$

of¥a by (£ - (0 @ so@B) (et

k=1

b(k)= A (k=1yeeoym)
bg;)- bgg)— o

(1 (., H(2). S R O
P47 P43 0 Py 3CA27} (1) (m+2) (m+3) (m+d) °3

1.(1)_ bS;)“‘ b\1)_ ® 5

(3) O NS Y ¢ m+3
,—7>)“2(m+1 (42 ) (1:#3) () 27

5 " T 2c§2) ? 1m(m+1)(n+?‘(xJ )
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(2) L

b54 i 2Z§?7ag(m+1)(m+3)(m+4)

i1 k=2
k(ke1 EE:b(a)a

2 53 ij 73 (k-1,...,m ; 1=3,4,5 )

(k) k
biy'= a4 -

Numerical Examples

———. o

The practical cvaluation of these formulas is only valuable, when

it is ocombined- with the use of the recursion formulas which are descrie
bed in Chapter II, With these the methods again can fully be made auto-
matio by using the same subroutines. It may finally be noted that in
nany cascs the calculation of Df, D2f,... often requires much less work
than the calculation of f itself (uspecial if there ooccur a lot of

clomentary functions like exp, log, sin, co8, see )o

In the folloving the methods arc tested at some diffeorential equations
with known sclution. They are further compared with the method of Fehl-
berg and with the power-serics method. All computations are with oriler
10 and have been carried out with single precisions (9D) on the Zuse 223

computer,

2
y'= 2x(c™* -y) y(o)=1 ;

.o

Example 1

2
solution: y(x)= (1+Jt:2)0"x .
Trample 2t y's %VQX'B/Z y(1)=1
solution: y(x)= X .

y'= 1-c"¥(sin x - cos x) y(o)=o i

sxaaple 3
solution : y(x)= log(sin x+e*) .

ixample 4 : y'= cos x .(y+sin x) y(o)=1

sin x

solution: y(x)= 2¢ -ginx =1 ,
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uxample 5 ¢ y'= (ay)/xy® y()=1
so:lution: y(X)B x.(1+4.10g x)1/4

Example 6 : y'= 2(xy>/2-y)  y(o)= 0,25 ,

solution: y(x)= (ex-o~3c+1)"2 .
Example 7 : y'= (xy°+y)/(x.log x) y(e)= 0,5
solution: y(x)= log x/(e+2-x) .

In the following table the crrors of the d1ifforent mothods with these
exarples and with the givcn step sizes arc listed,

. power

Example; h |lseries I II II1 IV | Foilv oz
1. 10,5 [11,60107¢ | 1,6.10°7 | 4,3.10"8 | 1,5.107% | 8,2.1078 | 2,>.1 ~
2. 0,8 4,0.10-4 5’4.10-6 8,1.10-7 4,4.10-8 7,6.1()-8 6";.". =
3, 10,25 5,2.10'6 1,0.10'7 4,4.10'8 8,5.10'1° 1,o.1o'8 5yiial
e |1 4,9.10'4 5,4.10'6 2,e.1o'6 3,2.10‘5 1,o.1o‘6 1,307
50 10,2 11,4010 | 1,5.107 | 4,2.1078 | 3,7.10°7 | 4,8010°7 | 1,1.1.7
60 f‘),(", 9’2010-6 5,2.10-7 _ 1,9010-7 2,4.10-8 4,3.10-8 1.0,1 -
7. Loy il1,1.1075 | 1,8,107 ! 1,001078 1 7,7.1078 | 4,2.107T | 1,177

¥

step size

I : foroula of order n+2

ITI : formula of order m+3 ;
III : formula of srder m+4

IV : formulo of order n+b .

As can be scen, the results of formulas III and IV on the average havc
the samc accuracy than the mcthod of Fechlberg. It can further be secn,
that with equal order the methols with more nodes arc very much better.
Tho results of III, IV and Fehlberg arc mostly 2-3 digits better than
with the power series mcthod of the game order. In addition note that
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the necessary work for the power serics method mostly is higher than with

the othcr formulas.

The following quostione are still opon:

1. " optimal" methods: the ¢Hefficients in general are not uniquely
dctermined by the conditions, Some of them have been fixed ar-
bitrary, mostly to reach sinple results,

How are they to be fixed to give wrethuds with minimal error?

2. How arc effective error estimates pnssible 7

%« How is the siability «f the methods ?
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Chapter VI

On Step-gize Control

by G. Yanner

This chapter dcals with the problem of choosing the step sizes
in the numerical integration of ordinary differcntial equatior:
using one~step methods. Pirst the frequently used formulas arc
discusse¢d which try to keep thoe local error constant. Then
expressions for an "optimal” step-size control are devcloped
which take into account the pronagation of the local errors

to the final result. duncrical rosults are given and compared
with thosec of thc step-size control of Merrison.
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Vi.i otep~size Control

A systen of n ordinary differential equations

y' = £(x,y)
is given and the solution y(x) with initial values Xg53¥q is
wanted at some point Xy e Using; some one-step method, the inte-
gration proceeds on the steps Xo K <Xp€e e Xy with the step-
sizes h1=x1«xo, h2=x2"x1,...,hﬂ=x”~an1. For a step size contrc.
the method has to be equipped with some error estimation, i.e.,
to each initial point XY, and step-size hk+1 it gives a appror’
mation ﬁi(xk+1) to the solutions end approximate error estimatio.
R;. The usual procedure now 1s trying to keep these local error:
equal to soue ,iven numbers Yy the wanted errors. These might »:
10_5,10"10,10'20 anda depend on the wanted accuracy. Thus by

putting e
) iRy
(2.1) n = max
i Vi
ore tries to kecp n=1. A possible rrocedure is now the followin.::
The first step is calcula o ..l o uessed rtep-size hi' Then

can be evaluated by <1.1). Of course, n will not be equal 1. If
D is the order of the method, a iuch nore better step-size would
have been
(1.2) & = n, 24175,
But if n is not very much greater than 1, say n<n, with
n,* 1.5 or 10, then we use h for the next step
k,=h,
otherwise we rejeat the first step with the step size ﬁ»hi.
The samc procequre is then aiso used in the following steps

112‘313‘1... .

\/'I ° 2 . Dalulﬂill“

Jecasionally, especially in regions where Ri changes sign, n
may ve very smail or even zero. In such cases, formula (1.2)
would lead to an oxeeornive increase of the step size. Fer thic
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rcason, one chooses a number n1<1 (say *1/10, 1/100) and if
n<ny, one replaces (1.2) by

= . +2 - n L-"”'/
(2.1) h=h E;T (1 TB?iT_I) 1/n1 (ir n<n1).

Thus the step size can increase at most by the factor

+2 2;"..:!'. L0
This stabilizes the step size control and guards against over-
flow. Formula (2.1) is obtaincc by replaeing the hyperbola

ptl —
1/n by its tangent of the roint Ny

VI.3. ilorrison's Control

Consider the example
(3.1)  y' = ¥%, y(0)=1, y(0.999999)=?

The solution is y=1/(1-x), y(0.999999)=106. The solution for a
seneral initial value y, is y(x,y,) = 1/(1/y°~x). The derivative
of this solution with respect to that initial value is

(3.2)  H(x) = XFo) o oqyqary n)? = Py,
N

Thus, if the initial value ¥o=1 is changed, say, by 10"15, then

the solution at the point C.999999 changes by 10~ since
H(O.999999)=1012. If we compute this examplce by a stepuise
numerical integration with local accuracy 10'15, the final
rcsult will not be better than 10"3. Of course here it is
unwisc to compute alse the last steps with tihis same accuracy.
The last steps need not to be calculated with the same
accuracy than the first. The idca lics at hand to multiply the
chosen errcr sizes Yq by the conncction matrix H(x) along the
solution. This means to replace (1) by
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R
e i
(3.3) n = mix'THT§777;I
This is the step size control, which Morrison /37 / has proved
to be nearly "optimal” for the¢ case when n=1 (one equation
only) and when the errors Ri &1l have the same sign.

VI.U, Another Possibility

There is still anothecr possibility for a step size control
which shall be derived now:

Assumc the differential cquation to be integrated from X, to
XN using I steps h1=x1-xo, h2=x2~x1,... . The local crror of
the j=th step we denote hy ej and its propagation to thc final
result is

(N) _ ~1
(4.1) ej = H(xN)H (xj)ej .

We again assume that n=1 and that 2ll errors have constant sipgn.
although the results may bc interrmreted for the other cases
as well.

Neglceting rounding cerrors we nay assume @ =¢1h

p+l thus
jeeghy . thu

egN)- thg *1 here x.=H(x )H”i(x,)¢..

ASaumlng that x- does not depend on hi,.. h (what howecver
actually is the cas»), we solve the casy mnnlmum problen

p+l
o{) . E:' D57 2 mind
JiJ =
under the condition that
P
S. he = %x,,~x_= C_,
= J il “o o

The method of Lagrangc multipliers gives hj s Ci/ P/"Z; .

Thus the local error 05 should be
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$.C k h
Cj=¢Jhl.)+1=—li 2 = %
J ij/:Tg H(xy )K" (xy)
ience, the step~sizes are chosen '“optimal", if
(4.2) HCxE  (xg)e;ngt = K,

i.e,, ifethe contribution egN) of cach step to the final rcsult

is _proportional to the step-size.

In the case n=1 H(xN) is only a constant number and necd not be
known. liencc, in thc coursc of computation, it is only necessary
to keep

(4.3) H"l(xj)ejh31=y.

This result differs from that of Morrison by the denominator hj.
An error estimation for the total truncation crror is now ob-
tained as follows:

The final error e§N) (4.1), which results from e, is because of
(4.3) equal to =th(xN)y. These numhers are summad up casily to
rive

(8.8) E = (xy=x )H(xyg)y

as estimation of the total truncation error of the final rcsult.

Formula (4.2) may also be intorpreted for systems of differential
-quations. But then the knowledge of the final connectionmatrix
H(xN) is necessary. On the other hand, the use of (U,3)seccms only
adequate, of all eigenvalues of H(xN) have approximately the sam:
size. This is, because (4.3) mapps the érror not to the endpoi:t
X, but to the initizl point x. and the box max{Rj|=y riay .chang:
shapc considerably

()

%




Finally we mention the puper Grecnspan-Hafner-Ribarie /20/.
Ther< lorrison's control iz compared with scveral others
(such as the "natural® stcn size of Collatz /7/,p.89). For
differential equations with constant cocfficients (y'scy)
Merrison's control as wcll a2 the above "optimal® control
Lecome & control with constant step size (for the methods
considered in this report).

vI.5. Numerical Lxamples

Using the Lic-serics method of Chartcr III, the different con-
wrols of the seetions Vi.1, Vi.3 and VI.H have been comparcd
at several coxamplaes. The results are listed below:

Lxample 1: y' = y2, v(0) = 1 _ solution y(x) = 1/(1-x)

step , actual crror time prv
sizc | ; grror of csflmatlon‘ ! stey
control mls “' Yy ! X y(x) ifor y(x) i§teps’(m soe’
nornal |10’ 31210 17'o 9 3.01#107 10 ~e 23 | Wb
. 0.99 505240713 —as . 50
N 0.999999 2.8081075 | wwe 210 |
15 32107 0.9 1.650107 371 .. 15 . 60
T 0.99 1.67410712 ) —nn 32
o 0.999999 1.73620°7 | -mem 123 .
optival10/32107 0y g, gv107 16 | 5.0010" 167 25 - 56
L 0.99  7.50107 | 9.9%10 g
‘ 0.999999 7.6010°®  110.0010° 1 18
153 2 10790,9 ¢.107% 9001088 46 71
| 0.99  7.00207%0 | 9.0010710 34
-3

0.999299 7.2020°0 10,0020 ® 92

— .

Up to 0.99 only, the optimal step size control pives no
noticcable inercasc of cffcetiveness.,
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Example 2: yi:ya, yé:yi, y1(0)=0, y2(0)=1, solutions: ¥y = sinh :
Yo ® cosh x

Results for x=10:

stop ; actual error

size ! ' grror of |[estimat. |

control! mis k| vy h yi(io) for ¥y Isteps

normal |{1315/3/107%{0.83 ..0.53 [1.21%*10"°% = | 15

optimal {13 ]5]31102°{0.805 ..0.811 |3.75+10716] 4, ue10720| 13

optimel |13 (513 |1072%10,7203..0.7205/ 4.2 #1071/ 4, 9010717} 44

i I

As expected for linear systcus with constant coefficients, the
optimal step size remained constant. The estimate for the

cotal propagated error is satisfactory.
q

Lxample 3: y'=-xy3, y(-1) = Yoo solution y(x) = y°(1+(x2—1)y§) 3

a) ¥, = 0.999999995, thus y(0) # 10000
y(1) = 0.999999995.
Results for m=15, s=3, k=2:
step zctual error
size igrror of |estimat,
control | vy h x1y(x) for y(x) |steps
normal #0 °°[0.2 ... 0.00003|0!1,9%10%% | -n-- 28
!
1/1.8910711} --ee 67
optimal 10712 |0.z ... 0.00007|04.9*10" % | 9,0v107! | 21
' L d -
1114.1#10713 [20.0010723 | 55

For this example, constant step sizc 1is not advisabloe,
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b) Io = 0.99999999995, thus y(0) 2 100000
y(1) = 0.99999999995.
Results for m=15, s=3, k=2:
step jaztual crror
size ~ iecrror of | estimat.
control Y h jx y(x) for y(x) |steps
normal 110712 ]0.29..0.00000230 1.6 10%2 e 46
1]1.7 10713 - 107
- ~14 ! -0 -0
optimal |10 0.211..0.0000060|0 5.1 10 9,6 10 32
1154 10"15120.0 10712} 80
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Chapter VII

Caloulation of Switch-on Transients at the
telegraphic Equation
by Means of Gencralized LIL - Series
.

by R. Saecly

Abstract

This chapter deals with the switch-on transients occurring in
the telegr.phic equation,i. e., an initial and boundary value pro-
olem of a hyperbolic partial differential equation, by means of
gonuralized Lie series. We sholl ugsume that an ordinary alter=-
nating voltage U(o,t) = A coswt + B singt is applied across the
input terminnls of a telegraphic line (clectric twin line) of
longth a, Ve confine our investigations to two limiting oascs,
nawely, that the line is either shcrted or open at the other end.

The first part of the paper gives a formal solution using
power scries. The solution is represcnted by means of Lie scries
vith a generalized Lie - Operator. Next the switcheon transients
is treated with shorted wires and given initiel and boundary con-
Jitions. Tvwo numerical examples shall illustrate this switche-on
transicents problem. Finally the computation of the solution U(x,t)
and J(x,t) for thc initial and boundnry value problem with open

wires is given,

My thank go to Prof, W.Groebner for his assistancojI wish ack-
novwlcedge the discussions with H.R«itberger, G.Wanner and K.H. Kast-

lunger.
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II.1 Introduction

1. The Telegraphic Equation

In the prescnt paper we shull calculete the switch-on transients
occurring in the telegraphic equation, i. e.,, an initial and boun-
dary value problem of a hyperbolic partial differcntial equation,
hy means of gencralized Lie-sceries. We shall assume that an ordinary
altcrnating voltage U(o,t) = A cos wt + B sin wt is applied across
the input terminals of a telegraphic line (electric twin line) of
length a. We confinc our investigations to two limiting cases, namely,

that the line is either shorted or open at the ~ther end.

Let 892 By REh - npit o €10 % tne output terminals of the

linc. We take one axis of coordinates along the line and denote the
digtance from the input terminals by x. The length of the line is a.
At time %, thc current J(x,t) flows in the wire at the point x, the

voltage between the two wires is T(x,t).

°1 J{x,t) o
v N
U(x,t)
22 \. o2
X=0 X X=8

Fig. 1. Schematic diagram of a tclerraph line

O0f these parallel wires we consider a very small line element
I,II,III,IV of length dx (infinitesimel four-pole). We assume the
linc constants, rcferred to unit length, to be independent of space
and time coordinates and denote them by tﬁc following symbols:

T seses00 resigtance

l ....... inductive reactance

Q +eseee. conductance (leaking insulation)
C seseees capacitive reactance
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r dx 1 dx
S M B g 1498
o dx
qd s T+ Uzli.t
II Iv
< dx -

rig. 2. Infinitcsimal clement of a telcgraphie line

The two basic equations of the tveiegraphic cquation follow
Irom the lawes of clectromagnetic theory:

(1.1) I (x,8) = -QU(x,%) "~ oty (x%)
(1.2) U (%) = -r3(x,t) - lJt(x,t)

To climinate current in (1.2) we differentiate the first cquation
with respect to t and the second with respect to x. Putting

rQ = «
rc + ol =
le = vy
ve obtain the telegraphic cquation for the voltage U(x,t):
(1,3) Uxx(X1t) = aU(x,t) + 3Ut(xvt) + YUtt(xvt)

An analogous equation in J{(x,t) can bc found by differcntiating
(1.1) with respcet to x and eliminaiing Ux(x,t) by means of (1.2):

(i.4) T (%t) = ad(xz,t) + BT, (x,t) + 3., (xt)

In their physiocal meaning, thc constants a«, B and y arc positive.
Yathematical treatment requircs only that y>o0, becausc this makes
the equation hyperivlie, With o = § = o, the telegraphic equation

“ccomes the ordinary wave equation.
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2. Formal Solution of the Telegraphic Equation

Fquation (1.3) describes all clectric phcnomena in the two
parallel wires. A problem frequently arising is: what happens when
the system is switched on? At giver time (t=0) the system, whose
clectric condition at that moment is known, experiences some kind
of axternal influence. We wish to calculete the changes produced by
this influence. We assume this influcnce to be a suddenly applied
véltage. We assume further that, at the point x=o0, the voltage
U(o,t) = £(t) is a given function of timec. From the basic cquation
(1.2) we find

Ux(o,t) = -rJ(0,t) - 1Jt(o,t) = - rg(t) - lgt(t) = h(t)

Now we shall solve the telegraphic equation with the power
series expansion (cf. /23/ , p.112)

[-
(1.5) U(x,t) =3 =¥ (%) .
v=0
vhere the funotions Wv(t) arc yct to be determined. The functions

‘?o(t) and \1'1(t) can be found from the initial conditions:
(1.6) U(ot) = £(t) = ¥ (t) and

(1L1) U (0s4) = B(t) = ¥, (%)

be
The remaining functions vv(t) mayYealculated by means of a re-
cursion formula which can bec obtaincd by comparing coefficients of xV

after the power serics expansion has becn inserted in (1.3).

av (t) + Byl (%) + yw;' (1)
v +1)(v+2)

(1.8) ¥ oe(t) =

All fundtions Wv(t) can be calculated from this formula, becausc
?o(t) and ¥,(t) are known from thc initial oconditions (1.6) and (1.7).
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Introducing the linear opcrator
.2
. d 0T
L1.9) Do o + P + § =i
ot ate
ve can write the soluticn cf the differential equation in a more
ccnvenient form.

Thoe recursion formvla ig then

$02Y %) = —GrTeET 2% ()

The function ( sories) solving the equation can now be written
25 the sum of the terms x"\llv withv even (v= 0,2,4,...) and of
“hc torms with v 0dd (v= 1,3,5,000s )

For the Wv with eveﬁ index vie write
v +2 =21

Thic new summation index p is inserted in the reoursion for-
mule (1.81)

Ta2(t) = ¥

1 1 U 1 B
ou = Tulenet) Y-z = T D Y(t) = Ty DL (E)
Lilkevise, for odd v we have:

v+ 2 = 2 41

s 1 : = ) b - 1 B, .
“'\H-Z(t) == \F2p+1(t) = WDqu_1 W! D ‘{’1(1?) W)!D ags,

Torce follews the formul solution of the tclegraphic equation (i.-,

® 2y =~ v +1 5
(4.1¢) U(x,t) .E -(-EL,‘—J!D"f(t) +§ | %m! D n(t)
V=0 =0

To obtain the complete solution one has to know the corres-
voriding boundary and initial conditions.

The current J(x,t) is obtained by integration of the differential
ceuaiion (1.1)

DI COPENORS FOFRE DLICRRE

“ne proof that (1.10) converges can be given by a majorant method;
it can be found in /23/, p. 114 et sequ.).
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VII.2 Switch-on Transients with Shorted Wires

1. Initial and boundary conditions

To bo able to solve the telegraphiélequation, i. e.,to desoribe
jhe boundary and initial value problem completely, we need the cor-
responding boundary and initial conditions.

We shall assume the following conditions:

Until time t=0 there is no current nor voltage in the wires.
Ar alternating voltage U(0,t) = 4L cosyt + B sinwt is applied at
*his moment t=o. This immediately gives the initial conditions for
the voultage funotion U(x,t) at any x except at x=0 and for the
current function J(x,t).

(2.1) U(x,0) = o X >0
(2.2) J(X,O) = 0
The initial condition

Ut(x,o) = 4 X >0
follows from Eq. (1.1).

Vhat we still need are the boundary conditions for both cnds
of the line of longth a. One of them, for x=o (after an ordinary
alternoting voltage has becn applied), is

(2.3) U(o,t) = A cos wt + B sin wt = £(t)

As we assume the line to be shcrted, the other boundary con-
dition for x=a at the end «f -the line is

(2.4) U(a,t) = o
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2, Transformation oi a few exprussions

Beforelintroducing the initial and boundary conditions into thc
formal solution for U(x,t) (cf.(1.10)) we shall bring a few expres -

sions into a more convenient form,

We apply the generalized Lic-operator D of Eq.(1.9) to the
function f(t) which gives the variation of the voltage U(0,t) at
the point x=0

D°f(t) = f£(t) = A 008 wt + B sin yt

D1f(t) = Df(t) = A 008 wt + B,sin wt =

[_(a-ywz)Ao + MBO'_[cos wt +[- Pud + (a-vmz)Bojsin wt

This gives the following relations for the coefficients A1 and B1:
2
A, - (¢ - Yw)Ao + Pu3,
2
B, = (¢ = 74 )13o - Pud
By applying the operator D v -times to f(t),
(2.5) D¥%(t) = Agosut + B ginwt

we obtain recursion formulas for the cbeffioients Av and Bv

{3705f by induction):

(2.6) A = (a - y)A 4 * BuR, _
2 for v 21
(2.7) B, = (a - )B4 - BuA _,

Vith the matrix

2
; @ = Ty -Buw
{E'E} = 2
+Buw ¢ = Yuw

and the corresponding transposed RT (for the rules »f matrix

caloulus cf. /24/ ) the above formulas can be written in matrix
form:
A, TfAy_4 A A
- T \2 V=2 V[ O
= [ a(ﬂ ) = (ﬂ)

B, By “va2 Bo/
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, After having transposed this matrix equation, .

(AysB,) = (A3, )[(nT) ¥ =(4,,8,) 8"

we insort the matrix (4 ,B ) in the first term of the formal solutior

for U(x,t) (of.(1. 10))

(7}

2v 2v
2\(’5'\75'! D f(t) :%2_\;)-' (A)oos wt + B sin wt) =

\' =0 vy =0
t\
S g;(zﬂa t (vsB) (:gg at ]
2:3{'_72\-, T DVE(t) = <Ao'Bo)(i: o / e :t
. : V=0 V=0

3. Statement for h(t)

For the functi»n h(t) = Ux(o,t) (sce (1.7)) we write

(2.10) h(t) = h1(t) + hz(t) = C,008 wt + D sin wt + h,‘.,(t)

Thoywe substitute the expression (2.10) in (1.10) which gives

o 2v 2u+1
@D na,) - 3y, 0% ¢ 3 Fey Py 4
"0 ay+ "ee
+ Z-(-z—v—m ﬁ'h (t)

V=9 .
In this represcntation,each t¢rm on the right-hand side in-

dividually satisfiecs the telegraphic equation. In the same way as
we did with the first term of thc above solution function (ef.(2.9))
we can also transform the second term:

x2v H .
(2.12) L W)!D “h 1(8) = (c,,D )(Z_(_z?:_)' aVv )(:g; 3:)

The firgst two terms of Eq.(2.11) will be denoted by U1(x,t),
the last one by v(x,t)

(2.13) U(x,t) = U1(x,t) + v(x,t) with

& 2 v+
(2.14) v(x,t) = Z%ﬁ%)! D"hg(t)

v=0

iod 4o
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Now, we determine the coefficients C and Do 8o that the functio:.
U1(x,t) also satisfies the two boundary conditions (2.3) and (2.4).

One boundary condition, U1(o,t\. follows from (2.11) when we
put x=o0:

(2.15) Uy(oyt) = £(t) = A coswt + Bosinust

. (e£.(2.3))
The other boundary condition is . ‘

(2.16) Uy(ayt) = o

The funotion v(x,t) is then zero at the ends of the line (x=o
and x=a).

Hence, we have another boundary oondition for v(x,t), namely
(2.17) v(a,t) = o

Moreover, we nust determine v(x,t) so that it satisfies the
initial conditions (2.1) and (2.2) for U,(x,t) does not satisfy thex.

As we shall sec later, the function U,(x,t) constitutes the
steady part of the solutien whereas v(x,t) is the non-persistent
part of the voltage function.

4. Calculation of the coefficicnts C, and Do

To make the calculation of Co ani D° more transparent, we bring
the matrices
aY ® a +1
£. x v a . X aV
Pi=2_Tam T o Rps I (T
. v-o =
to their normal form (of. /24/, p. 195).

The eigenvalues Q41Q of the matrix

o - Yu? - fuw |

w € =Y

(218) oy = (@ -m’) & i.Bu
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The matrix P1 = cosh fﬁ? can be brought to diagonal form, be-
cause the eigenvalues ¢, and ¢, arc different (B # o)

2v 2v
(2,19) T cosh xVA'T = (T Q" 7T) = (r°'a)V -
S T e - T
[ 2v © 2v v
X v X Q o
-2 T -Zm:(o' Q;\)-
. u-ﬂ \’-O
cosh xfﬁf )

0 cosh x Q0

after a simple calculation, we find the matrix
Tad

(2.20) 1 1 i

T = and its inverse '1"1 .
-1 i i

/1 i
(2.21) 1. %
1 -

Multiplying the matrix funciion (2.19) on the left by T and
on the right by 7! wo fina

cosh x| = 1 cosh xvq'{ + cosh xﬁ, i(cosh x|e] + cosh X|T,
2 1-i(oosh xyq; + cosh x[q,), cosh x|@) + cosh x{3

After a few trensformations

VE; = 'V(a - Yu) - Bul = p - iq
Vo—a"= '\J(a -yu) + Bul = p + ig

wd Ll

L)

. ,:Vﬁ.a_zr_r_w_l + %;‘V(a - 12)? - (B)?
> —
: %[Lg__m.). + 3 - W - (m)?

2
we find
Py 94
(2.22) P, = cosh @ = -
=q, p1
cosh xp.cos Xxq, sinh xp.sin xq

- sinh xp.sin xq, cosh xp.cos xq
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In the same way we also treoat the matrix

241 1

v - -
(2.23) Ppm Y = a 2.sinh xf@

The oalculation gives then

2.2 P2 %2 ith
( . 4) Pz - _q2 p2 w

1

P, = - . ( p.sinh xp.cos xq + g.cosh xp.sin xq )
P +4q

2% 2 > ( p.cosh xp.sin xq - q.sinh xp.cos xq )
P taq

With xea, the matrix P, becomes
» a2V Q“ il B9 m12'
M= S = cosh a\q =
$o5 (@)1 P YIRY
with .
Myy = W, = cosh ap.cos aq and

Myp = = Myq = sinh ap.sin aq

whereas the matrix P. bocomes

-
2 .
= 0 2 girn aV?f a ( i 1e

N’Z%z_'\ﬁﬁ')zn

V=0 n21 n22
with
1 .
Nyy = Dy, = =5 (p.sinh op.cos aq + q.cosh ap.sin aq)
P *q
1
Nyy =Ny = =7 > (pecosh ap.ein aq - q.sinh ap.cos aq)

P +a

C-nsidering the boundary condition (2.14) we obtain

coswt cos wt

= (Am,, +Bm, +Cn,, +D cos wt +
o 11 o 1

o 21
+ (Aom12 +Bm

ofa1)

+Cny, * Donzz)ain w =0

22

The coefticicnts of cos wt and sinw t must vanish in order that
the above relation is satisfied at any instant of time t. The



Vil.2, 143

¢cefticients Co and Do arce then readily found by Cramer's rule.
Ay (mqqn .- mypfipq) + B (i1y40p5- Thafa1)
A92T21 = Byqlize

J2.2n € w

ho(myngp= moonyy) + Bo(myyny,- myony,)
Faqllo2 = Myplyy

5.  Calculation of the voltnge part v(x,t)

The cendition

I3 a?‘)+1 o
v(a,t) = 5___ T3577)1 7 h,(t) = o (ef.(2.17))

i, ,3 ,‘,

S

¢en ba fulfilled when the function of time, ﬁ“hz(t). is formally

wremmed asg

2 2*“
(2.28; o n (t = (- 1) th( %) 4 [ > J for k = 1,2,3,40,
8

aie relotion must be inseried in v{x,t):

& +1  +1 2 v+1
. = X V.. k“ +\
e(xit) = 3 Ty Do) ¢ j? (‘1\ 2u+1)!( a) By ()

vV =0

Using the scorice expznsion of the sine and supcrposing v(x,t)

v find

/ o e 2 knx
(2.29)  w(x,t) = v, (x,t) = > = (t) sin 222
) ;: k = kn k a
The Kelation (2.28) is equivalent to the equation
( kz'tz
2'20) *lzk\t) o= h2k(t) ’

&

wionce one can determine the functions h2k'

? 2.2
() = ey (8) + £ G gy () + 7 L my (8) - myy (1) 5
a



_"?!t',r

144 VII.2,

2 2
yh'z'k(t) + Ghék(t) + (a + -k-u+) hzk(t) =0

This homogeseous diffcrential equation has the solution

8t
(2.31)  hy(t) = e 2T (C,com wyt +Dy8in w t)
7.2 5
k™ n 1
where = |[(u + )—-.%.
ks a1V 4y

(the oase ui( o can easily be inclused in the caloulation).
The funotion hz(t) can also be obtained by superposing the hak(t)

(2.32)  h,(t) = hy, (t)
Inserting (2.32) into (2.29) we obtain

- Bt
(2.33) v(x,t) = e 2 —- (c cos w t + D, 8in t) sin —= X
e

nx

6. The solution U(x,t)

Inserting (2.33) into (2.13) we obtain the solution function
q4 ’ cosw P2 \feos wb‘

(2.34) U(x’t) = (A »B )( -q4 p1)(sinu t) + (CO'D )( q2 p2 8in w* /
. .

-8
+ e ey Z (Cco'au t+Dsinukt)sinm
The coefficients Ck and Dk follow from the initial conditions (2.1)
and (202)0
We insert the condition (2.1) in (2.34) and we obtain:

U(x,0) = (AO,BO)(I_); ::)(;) + (c,,D,) (322 :z)(:, +

a knx
-3 kn C fin == =
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] i

The Ck can be regarded as the Fourier coefficients of the
knx

orthogonal system {sin -5-) , fer E k C sin m represents a

Fourier series for the function

( P qq q
{- (8,98,) (_;1 p:)<;> (c,.D, )‘ p:\)(

Hence,we obtain the Fourier coeffieients

(2.35) %; C, = - ; ﬂ(Ao,Bo)( _q1) + (D) )} ain ;"‘ dx
0 is 5

The rasult for the coefficients Ck is

(2.36) ¢, = - 22 f U, (x,0) sin XX . ay

a
o)

To determine the coefficients Dk we have to consider the initial
condition (2.2).
Ut(x,o) = U1t(x,o) + vt(x,o) = 0

Calculation gives

Py )/ P, 4
U, (x,0) = (AO,B°)<_;1 p:)( ﬁ)m + (co,no)(_z2 pz)(‘;)w =

Here, Z Dk k sin KEE can acain be assumed to be the Fourier
series o? the function

(i) el
b o) (3]

viith the Fourier coeffic1ents

(2.37) %Dkwk O %I{ - U‘H;(x’o) = ‘2%7 U1 (X,O‘)fsin _l_(_;t;. dx

N
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7. The solution J(x,t)

Integrating (1.1) we obtain the solution for the current J(x,t)
(2.39) J(x,t) = -S (o + o %%') U(x,t) dx + J_(%)

With the abbreviations

P1(x) .(91 q1\ = cosh x{q

"9 Py
) P q y
2 2 A
Pz(x) = (_q2 p2) = Q 2sinh xva

P3(x) = sz(x) dx = 0-1cosh W
ve find:

(2.40) J(x,t) = - Qt(A »B,) P 2(:‘;?4»:)“ (c,sD,) PB(‘;‘;; ::)-

2
- 27 zk- (kn) Lc cos “kt +D sinm kt-lcos mz -

sin yt -sin yt ’
- e (Ao’Bo) P2((:05 W% ) 0 + (Co’Do) PB ( cos mt)m kK
t ;
- 2 -—
.E- 27 ] a,_ ' ' knx -
+ 27 e Z o Ckcoa mkt + ])ksinmk t_lccs —=
_ gt k=l
2 k
-e °V Z kn)z[ ckmksin wt + D w, cos mkt]cos —:—x- + Jo(t)

The integration constant Jo(t) can be found from the relation

for J(o,t) which can be derived directly from the basic equation (1.:).

The time function J{o,t) satisfies the differential equation ('."!}

(i.1) Ux(o,t) = h(t) = - (r+1 -g-t-) J(o,t)

(2.41) 1J,(0,t) + rJ(o,t) = h(%)
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Its solution is

c1
(2.42)  J(oyt) = = -—;’-——2—2 ( %cos wt + weinwt) -
r +wl
Dol r
- ——, ( T sinwt - w cogpt)=
T+l
Bt
2. C 2y = ]
E — £ (- = £=) cosw, bt + w.8inw t] -
- 1 (-r---@—)2+wa L'l 2y k % k
1 2 k
Spad &
s D, Y ~ - i
" -1-’- < ({- - -zp--) siny,t - wcos wkt] +Ke
k=1 r gy, .2 L ¥
(T=-3) +o
1 2y k
The constant K results from the initial condition J(x,0) = O
(ef.(2.2))
(2.43) J(0,40) = ©

Cr-Dlu ¢, &-£) -0
- t kM1 2 k'k
Crt g ;12 ’ k=1 @7 2 2
pf + < _I;
1[(1 ey ¢ “k]

Hence, we find the originnl integration constant Jo(t)

(2045)  J,(%) = J(c,t) + e{(Co:D ) & (::Z:::)'

i

2y o fa )¢ .
- e gk-1 (kn} [Ckco" “’kt + Dksin «i{t]} +
‘ -M-sinwt‘
c{(co’po) L ( coc gt

1
-3 =
+ % o Y k:1 \kn l'kcos wd + Dysin “’kt] -

+

€

2

2 «w
= <V §k1 ( - Ck“’ k8inw,t + Dkukcos “kt)}




148 VII.2.

8. Numerical examples

Two numerical examples shall illustrate the switch-on transients
problem in a shorté&%uhe have examined the maximum values of the
power function at the point x=0 in dependence on the phasc angle <
of the applied voltage

U(oyt) = u cos( wt - 1) = A  cos ot + B sin ot
during the transient proocess. Caloulatione+gera performed at the
ZUSE 223 computer of Innsbruck University,

In the first numerical ecxample, the elecirical constants per
unit lenght were chosen as follows:

resistance T = 1 lenght of wires a= 1
induktive reactance 1 = 0,2 angular frequency

capacitive reac- of voltage w = 300
tance ¢ = 0,002

leakage Q= o0

This result ( see table ) shows that there is a notable strong
resonance and superposition effekt. For = = 120°, the power
funotion main peaks at x-~o increases to more than 205% of the
maximum value in the steady final state.

+)

The corresponding programs of the numerical examples aie
contained in(/43/p. 39 f££.)
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The following table shows the results:

R o

Main peaks of Peaks in|
. povwer function final
T} Ag=loc.00s 7| Bxloo.sin 3 during transient state
I
o 100 o 3985 1992 i
o 98,4800772 1743648176 3995 1992 '
20 9%,9692619 %34,2020142 4003 1992
30 86,6025401 50,0000000 4004 1992
40 76 ,6044441 64,2787608 4015 1992
50 64,2787608 76,6044441 4018 1992
60 50, 0000000 86,6025401 4021 1992
70 34,2020142 93%,9692619 4026 1992
80 17,3648176 98, 4800772 4028 1992
% | o 100 4030 1992
100 | =%7,3648176 98,4800772 4032 1992
1o -34,2020142 9%,9692619 4025 1992
120 | =50,0000000 86,602540 1 4090 1992
130 -64,2787608 76 ,6044441 4004 1992
140 | =76,6044441 64,2767608 4040 1992
150 -86,6025401 50,0000000 4009 1992
160 | -93,9692619 34,2020142 4005 1992
170 | -98,4800772 17,3648176 4002 1992
180 =100 ) 3985 1992
190 | -98,4800772 -17,3648176 3995 1992 !
200 | =93,9692619 -54,2020142 4003 1992
2i0 | =-86,6025401 ~50,0000000 4004 1992
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Fig. Peaks of the .ower function N(o,t) = J(o,t).U(0,t) versus
phase angle 7t of the applied alternating voltage.

transient

gt¢cady final state

> —rh A i "

Mix N(o,t)
4000
3000 ¢
2000
1000 1
0 AA};

" 6o 90 120 150 180

+~—» phasec <t

1 M T \ AR

The following values were chosen in the second numerical example:

resistance
inductive reactance
capacitive reactance

- T e T A ¢ ]

leakage

1 lenght of wires as= 1

1 angular frequency

0,01 of voltage w = 100
0,01

With N(o,t) tabulated, the following result was obtained for the
peaks of the power function N(x,%) at the point 'x=o

Phase 1 !A°-1oo.oos T B°=1oo.sin T g:igngenks ?:g:g ::a::eedy
transient !
) 100 0 1144 928 ;
10 98,4800772 17,3648176 1166 928 E
20 93,9692619 34,2020142 1127 928
30 86,6025401 50,0000000 1028 928
40 76,6044441 64,2787608 1029 928 ‘
50 64,2787608 76,6044441 1037 928
60 50,0000000 86,6025401 1040 928
To 34,2020142 9%,9692619 1042 928 '
80 i 17,3648176 98,4800772 1068 928 ;
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1

PLnsae T Ao=1oo.cos T BO=1oo,sin T ¥ain peaks | Peaks in sie=ly
during final state
transient }

| 8o 17,3648176 98,4800772 1068 928

9¢ c 100 1043 928 i
100 ~17,3648176 98,4800772 1042 928
110 =34 ,2020142 2%,9592619 1038 928
12¢ -50,0000000 86,602540" 1036 928

- 130 -62,2737608 76,6044441 1012 928 !

(o -76,€024441 64,27876c8 1024 928 '

a 120 ~-86,6025401 50,0000000 1027 928 i

R -93,9692619 34,2020142 1008 928

L 7o 98,4800772 17,3648176 1036 928

i i20 -1co o 1144 928

| 190 -98,4800772 | -17,35648776 1166 928

' -34,2020142 928

-93,2€92619

1127

This examnrle shows a clear deperndence of the main peaks on

- plase angle <

Tig.

of the applied alternating voltage.

DX

Main peaks of the power function N(o,t) during the tramsicni
anl zncaks of N(o,%) in the steady final state versus phes.
angle t of thec applied 2liernating voltage
1200? Max N(o,t) U(o,t) = A coswt + B sinwt
i000 |
8oo} steady final state
600,
.
4004
2004
1
b e E— s ha
o R TR e e

L A AN A ) <
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VII. Switch-on Transients vith Open Wires b

The transient processes with the wire ends open can be treatédd
mathematically analogous to the case of shorted ends.

1. Initial and boundary conditions

We shall assume the ini%tial sonditions
(3.1) U(x,0) = o x>0
(3-2) J(xoo) = 0
(3.3) Jy(x40) = o

and the boundary conditions

(3.4) U(o,t) = A cos ut + B sin ut

(3-5) J(a,t) = 0

Like in (7.10), the formel scoiution for the current is

1756) J(x,t) }_:: 3 D'Flt) + i il P h(¢
vhere

(3.7)  T(t) = 3(o,t)

and

(3.8)  &(¢) = 7, (o)t)
The function h(t) can be found from the basic equation (1.1)
and from (3.4)

(3.9) h(t) = Jx(ort)

- QU(o,t) = cUt(o,t) -

T coswt + T sin ot .

vihere we have put
-Bwc = QA = X and
Awc = gB=F
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2, Statement for J(o,t)

For the funotion J(o,t) we set formally (of. VII.2.3)
(3.10) J(o,t) = T(t) = f}(t) + Té(t) -

= Toosut +Dsinut + T;(t)

which we insert into (3.6)

» 2v . 2v y
(3.11)  3(x,4) = 3 TmomD Ty(8) + ST B P () + !
v=w° 2v+1 M
X

+;m)! Dv'l-l(t)

We call the sum of the first and third terms 31(x,t) and trans-

form them in the same way as in (2.9)
x 2\) v
- X 1) Cos wt
(3.12)  J,(x,t) = (CO'D"’)(EWP el )(sin wt ) *
[om. V4 %
FN>_ X a cos wt } _
* (RorB N 2 ) )( )

gin wt
\V "o} .
o 008 wt : cos wt
= (co’Do) P (sin mt) * (Io’go) P (sin .mt)
W s berm dn (3.11) we write

(3.13) DR A R
w(z,t) )\,=0 (291 D f?(t)
(3.111)  J(xyt) = I, (x,8) + w(zyh)

The cocfficients U; and ﬁo must be dotermined so that the
function J, (x,t) satisfics the boundary condition (3.5)

(3.14)  3,(a,t) = o
Jy(xy%) does not satisfy the initial conditions.

The function vw(x,t) must bc detcrmined so that the initial
conditions arc fulfilled and tha: %(x,t) becomcs zero at the end
of the line (x=a).
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Thus, wo have farther bonudary ocoudition for w(x,t)

(5.75)  w(a,t) =0

3. Calculation of coeffinients EU, io and of tho function wix,t)

Using the boundary conditions (3.14) we obtain (ef. VII.2.4)
'm m '
= o f = 1" 12\ {oos wt
(3.16) J1(a,t) - (t‘,'o,no)(mz1 mzz) (Bm wt) +

= -
- - 11 12 cos8 wt
+ (A ,B) = 0
o' o (n21 nzz) (sin mt)

This rolation holds at any time %, Therefore, the coefficients
of sin wt and coswt must be zero. The cocfficients 4 and B
arc given by the boundary condition (3.4), whence the coefficicnts
(‘_,0 and 'IT; can be found by means of Cramo;'e rule; the result is

Ay(ngqmyy = mqplyy) + B (nyymy, - Nyplys)

(3.17) C_ =
o Myolyq =MyqMso
i B, (nqymyp -nqpomyy) + B (n 21“‘12 = Nyynyy)
g Dyplyq = MyyMy,

The condition (3 15)
w(a,t)-z -(-—y D?(t)ao
is satisfied if we put

(3.18) D' (t) = (1) [(2k ) a)-ka for k = 0,1,2,40s.

> v L2V 2v
w8 = 35 () B (BT g0 - |

V=0

2k+1 | =
= cos (_573.- nx) ?gk(t)

@
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Superposiug tau 'JI’\.’K.,B) 2. tind the eurrcat part w(x,t)

(3.19)  w(x,t) BZ“: T, (4) oos (2k+1)

2a
k=0

The relation (5.18) can be written ns a differential equation

or the fornm

82
(3420) Di’k(t) = af/k(t) p at ?y(t) + Y — at2 2k(t) =

(t) + prk\f) + [a ,.(3.12:.‘:'_11 n)2 -l 'f-zk(t) = 0

The functions ??k(t) can then be found from this equation.

Bt
-~ 5 .
e °F (Ukcoe wid 'ﬁksin wiet)

(Z.21)  T,(%)

= i:; h [ = =" ._-2——]

w -
k
47
whers w havo aasamed that
2
1 n &
3o o >E,

A, The solution J(x,t) and J(x,t)

Inserting (3.21) in (3.19) we obtain

(3.22) J(x,t) = J1(x,t) + w(xet) =
D O S P, Qq
1 [
o’ o)(-q p1 sing 1) * BB 2 2 boas
1 1 w Q [¢] -q2 p2 ill o

o ? (Ckcus wet + 5ksin wt)cos -(-25—312- T3

1
—
2]
ol
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Th. cocfficients 'C—k and B’k can be calculatcd by the samc reas- ming
as in VII.2.6.

Considering the initicl conditions (3.2) and (3.3) wo obtain

the resuli

(3.23) T - -2 J 3,(x,0) cou {EELEX gy

k a

¢}
. 2 2k+1 ) nx
(3./.4) ‘3k " - -8‘.")—}( f{11 t(x,o) + 27 1(x,o)}cos ‘_-2?)_

o
The gsolution for the voltage U(x,t) is found by integration

C’f (1,2):
3J
(3.25) U(x,t) = = S(rJ +1 'aT)dx + Uo(t) =
== ens yi - = cos wt
= - r{(CO,DO) Pz(aip wt | + ("O’Bo) P} sin wt)

Bt .
Ty 2 (3 o 1.2.k_1_)__}
+ @ > YT (-chos wy,b +3ksin wit) sin S=5= -

== ~gin o3 -sinw t
- 1.{(CO’DO) P2( cos wt) &A ,B ) PB( Oawt) W -

B
bW = (r ﬁ&k_”_)’“ ;
- 3y c > ( cos W)t +Tsin wkt)m)— i
g0
+ ¢ E m“ "'k sin wyt + Dkwk cos Wet).

i&&:llzz
.8in =% + Uo(t)

whers

I (t)-U(Ot)*‘r{/]( +1{\}

= A coSwt + B sinwt 4+

vof G o ) SO YA G HE )r

Shin e

o
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